Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ken77关注了科研通微信公众号
3秒前
3秒前
3秒前
姜丝罐罐n发布了新的文献求助10
4秒前
5秒前
乌拉拉啦啦啦完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
闫栋发布了新的文献求助10
6秒前
拾弎完成签到 ,获得积分10
8秒前
王小茗完成签到,获得积分10
8秒前
钻石DrWang完成签到 ,获得积分10
9秒前
南兮发布了新的文献求助10
10秒前
10秒前
贾不努力完成签到,获得积分10
10秒前
11秒前
13秒前
15秒前
littletail完成签到,获得积分10
15秒前
我是老大应助Emma采纳,获得10
15秒前
保护外卖发布了新的文献求助10
17秒前
于冬雪发布了新的文献求助10
18秒前
ttt完成签到,获得积分10
18秒前
南兮完成签到,获得积分10
18秒前
希望天下0贩的0应助瓶盖采纳,获得10
21秒前
21秒前
lyj完成签到 ,获得积分10
21秒前
Albert完成签到,获得积分10
21秒前
lyk2815完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
Lucas应助Snow采纳,获得10
24秒前
咕噜噜发布了新的文献求助10
25秒前
NexusExplorer应助酷酷的问丝采纳,获得10
25秒前
zj完成签到 ,获得积分10
26秒前
华仔应助李y梅子采纳,获得10
26秒前
CipherSage应助橙子采纳,获得10
27秒前
css完成签到 ,获得积分10
28秒前
香蕉觅云应助闫栋采纳,获得10
28秒前
脑洞疼应助迷人的勒采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425362
求助须知:如何正确求助?哪些是违规求助? 4539459
关于积分的说明 14168091
捐赠科研通 4456964
什么是DOI,文献DOI怎么找? 2444356
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740