Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mr祥发布了新的文献求助10
刚刚
爬不起来发布了新的文献求助10
刚刚
刚刚
1秒前
CCCC完成签到,获得积分20
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
meng发布了新的文献求助10
3秒前
英姑应助hlt采纳,获得10
3秒前
科研牛马人完成签到,获得积分10
3秒前
fish1998发布了新的文献求助10
4秒前
4秒前
Sunny发布了新的文献求助10
4秒前
4秒前
11发布了新的文献求助10
4秒前
lienafeihu完成签到,获得积分10
5秒前
小二郎应助曾经的芷波采纳,获得10
5秒前
鲨鱼辣椒发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
啵啵完成签到,获得积分10
6秒前
6秒前
Ava应助李清水采纳,获得10
6秒前
谦让的忆文完成签到,获得积分10
7秒前
蓝墨轩完成签到 ,获得积分10
7秒前
上班之后就像退休完成签到 ,获得积分10
8秒前
zzt完成签到,获得积分20
8秒前
8秒前
8秒前
许珺尧发布了新的文献求助10
9秒前
小圭发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
春花发布了新的文献求助30
10秒前
科研通AI6.1应助南北采纳,获得10
10秒前
10秒前
无花果应助jos采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910