Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DGF应助沉迷学术无法自拔采纳,获得10
1秒前
猹a发布了新的文献求助10
1秒前
1秒前
slimayw12发布了新的文献求助10
1秒前
1秒前
共享精神应助马超采纳,获得10
1秒前
2秒前
cyl黄金杖发布了新的文献求助30
2秒前
张馨悦完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
legend完成签到,获得积分0
3秒前
爆米花应助xinxin采纳,获得10
3秒前
欧阳晨宇发布了新的文献求助10
3秒前
4秒前
jasmine完成签到,获得积分10
4秒前
4秒前
wanci应助DIXi233采纳,获得10
4秒前
CipherSage应助张丽妍采纳,获得10
4秒前
早日发文章完成签到,获得积分10
4秒前
小马甲应助小狼狗很凶采纳,获得10
5秒前
5秒前
6666完成签到,获得积分10
6秒前
6秒前
阿三应助slimayw12采纳,获得10
6秒前
md发布了新的文献求助10
7秒前
7秒前
7秒前
orixero应助牛奶牛奶采纳,获得10
7秒前
songf11发布了新的文献求助10
7秒前
8秒前
8秒前
grande完成签到,获得积分10
8秒前
CR7完成签到,获得积分10
8秒前
迷人雪碧发布了新的文献求助10
8秒前
欧阳晨宇完成签到,获得积分10
9秒前
seven发布了新的文献求助10
10秒前
kiko发布了新的文献求助10
10秒前
撒野完成签到,获得积分20
10秒前
忧郁紫翠发布了新的文献求助10
10秒前
香蕉觅云应助公孙世往采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647059
求助须知:如何正确求助?哪些是违规求助? 4772926
关于积分的说明 15037602
捐赠科研通 4805794
什么是DOI,文献DOI怎么找? 2569989
邀请新用户注册赠送积分活动 1526857
关于科研通互助平台的介绍 1485983