Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舍弃完成签到,获得积分20
1秒前
搞怪诗桃完成签到,获得积分10
2秒前
3秒前
马马发布了新的文献求助10
4秒前
ttjj应助jiang采纳,获得10
4秒前
7秒前
8秒前
虚心的飞鸟完成签到 ,获得积分10
8秒前
寄AAA完成签到,获得积分20
9秒前
野风车完成签到,获得积分10
10秒前
YUMI发布了新的文献求助10
10秒前
华仔应助大力世界采纳,获得10
11秒前
12秒前
爆米花应助寄AAA采纳,获得10
12秒前
13秒前
cappuccino完成签到 ,获得积分10
14秒前
小明发布了新的文献求助20
14秒前
情怀应助小曾采纳,获得10
14秒前
狂野的夏寒完成签到,获得积分20
16秒前
17秒前
文艺的竺发布了新的文献求助20
17秒前
zxm完成签到,获得积分10
17秒前
马马完成签到,获得积分10
17秒前
桐桐应助moon采纳,获得10
18秒前
SciGPT应助机智妙之采纳,获得30
18秒前
无奈凉面完成签到,获得积分10
19秒前
英俊的铭应助文艺的冬卉采纳,获得10
19秒前
kabane完成签到,获得积分10
19秒前
Lee完成签到,获得积分10
21秒前
三叔完成签到 ,获得积分10
21秒前
xinl518完成签到,获得积分10
21秒前
小蚂蚁完成签到 ,获得积分10
22秒前
CodeCraft应助stick采纳,获得10
22秒前
22秒前
梨炒栗子完成签到,获得积分10
23秒前
24秒前
25秒前
大大大飞机完成签到,获得积分10
25秒前
yoyo20012623完成签到,获得积分10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350303
求助须知:如何正确求助?哪些是违规求助? 4483745
关于积分的说明 13956970
捐赠科研通 4383013
什么是DOI,文献DOI怎么找? 2408103
邀请新用户注册赠送积分活动 1400754
关于科研通互助平台的介绍 1374194