已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助霸气的绮露采纳,获得10
1秒前
shinn发布了新的文献求助10
4秒前
wu发布了新的文献求助10
4秒前
Marciu33发布了新的文献求助10
5秒前
开朗的尔风完成签到,获得积分10
14秒前
lc完成签到,获得积分20
14秒前
17秒前
对方正在输入...完成签到,获得积分10
17秒前
甘草三七完成签到,获得积分10
20秒前
21秒前
21秒前
Lee完成签到 ,获得积分10
21秒前
111发布了新的文献求助10
22秒前
好运完成签到 ,获得积分10
22秒前
科研通AI6.1应助王先生采纳,获得10
24秒前
DDL应助学术牛马采纳,获得10
24秒前
吕佳蔚完成签到 ,获得积分10
26秒前
清秀的金鱼应助wu采纳,获得10
27秒前
美满的雁桃完成签到 ,获得积分10
28秒前
30秒前
撒旦asd发布了新的文献求助10
31秒前
机智的嘻嘻完成签到 ,获得积分10
32秒前
33秒前
xch完成签到,获得积分10
33秒前
35秒前
lyncee完成签到,获得积分10
35秒前
Lucas应助发的不太好采纳,获得10
36秒前
nono完成签到 ,获得积分10
38秒前
梨凉完成签到,获得积分10
38秒前
yangy0519完成签到,获得积分20
38秒前
科研通AI6.1应助开心夏真采纳,获得10
39秒前
英俊的铭应助添添采纳,获得10
42秒前
45秒前
46秒前
汉堡包应助财荫夹印采纳,获得10
47秒前
科研通AI6.1应助Oscillator采纳,获得10
48秒前
妖妖灵1111完成签到 ,获得积分10
51秒前
yanni发布了新的文献求助30
52秒前
李健应助Cl采纳,获得10
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058