Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao完成签到 ,获得积分10
刚刚
刚刚
ding应助胡杉采纳,获得30
刚刚
kyokyoro完成签到,获得积分10
1秒前
坦率的友容完成签到,获得积分10
1秒前
melina完成签到 ,获得积分10
1秒前
黄老牛完成签到,获得积分10
1秒前
单薄冰安完成签到,获得积分10
1秒前
宣以晴完成签到,获得积分10
1秒前
Chen完成签到 ,获得积分10
1秒前
彭于晏应助anlikek采纳,获得10
2秒前
123rgk发布了新的文献求助10
2秒前
左右完成签到,获得积分10
2秒前
贺兰鸵鸟完成签到,获得积分10
3秒前
Leeu完成签到,获得积分0
3秒前
ww完成签到,获得积分10
3秒前
3秒前
易点邦应助畅快的煜祺采纳,获得10
3秒前
欢呼芒果发布了新的文献求助10
4秒前
小杨老师发布了新的文献求助30
5秒前
醒了没醒醒完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
AZ发布了新的文献求助10
6秒前
学谦完成签到,获得积分10
7秒前
伯赏元彤完成签到 ,获得积分10
7秒前
做实验的猹完成签到,获得积分10
8秒前
科研通AI6应助123rgk采纳,获得10
9秒前
冰阔罗完成签到,获得积分10
9秒前
852应助畅快的煜祺采纳,获得10
9秒前
醉翁发布了新的文献求助10
9秒前
9秒前
Criminology34应助醉在肩上采纳,获得10
10秒前
直率的钢铁侠完成签到,获得积分10
10秒前
善学以致用应助12334采纳,获得10
10秒前
道心完成签到,获得积分10
10秒前
xiaojiu完成签到,获得积分10
11秒前
劣根完成签到,获得积分10
11秒前
科研小秦发布了新的文献求助10
11秒前
欢呼芒果完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130