Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥斯卡完成签到,获得积分0
刚刚
寻靖完成签到,获得积分10
刚刚
包容店员完成签到 ,获得积分10
刚刚
Joey完成签到,获得积分10
1秒前
小神仙完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
快乐的90后fjk完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
星辉完成签到,获得积分10
4秒前
大模型应助李志福采纳,获得10
4秒前
wang完成签到,获得积分10
5秒前
小曾完成签到,获得积分10
5秒前
asdfqwer完成签到,获得积分0
5秒前
Zoe完成签到,获得积分10
5秒前
Sevendesu完成签到,获得积分10
5秒前
6秒前
深情千雁完成签到,获得积分10
6秒前
小C完成签到,获得积分10
7秒前
更好的我完成签到,获得积分10
7秒前
光亮的谷丝完成签到,获得积分10
7秒前
瓦尔迪完成签到,获得积分10
8秒前
livinglast完成签到,获得积分10
8秒前
Nico完成签到 ,获得积分10
9秒前
吃面的章鱼完成签到,获得积分10
9秒前
GXR发布了新的文献求助10
9秒前
10秒前
10秒前
传统的复天完成签到,获得积分10
10秒前
伊里七完成签到 ,获得积分10
11秒前
xxx_oo完成签到,获得积分10
11秒前
科研啄木鸟完成签到 ,获得积分10
11秒前
李爱国应助神sjsj采纳,获得10
11秒前
积极乐观向上永不放弃的小孩完成签到,获得积分10
11秒前
贾不可完成签到,获得积分10
11秒前
追寻澜完成签到 ,获得积分10
12秒前
xiaofan完成签到,获得积分10
12秒前
billy_bian完成签到 ,获得积分10
12秒前
科研通AI6应助Sandy采纳,获得10
13秒前
夏天就是桃子味完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658633
求助须知:如何正确求助?哪些是违规求助? 4823327
关于积分的说明 15082234
捐赠科研通 4817197
什么是DOI,文献DOI怎么找? 2577998
邀请新用户注册赠送积分活动 1532791
关于科研通互助平台的介绍 1491515