Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [Springer Nature]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hu完成签到,获得积分10
1秒前
Shandongdaxiu完成签到 ,获得积分10
1秒前
AA完成签到 ,获得积分10
2秒前
4秒前
Lucas应助小贩采纳,获得10
6秒前
Hu发布了新的文献求助10
7秒前
Neko完成签到,获得积分10
7秒前
8秒前
俊逸吐司完成签到 ,获得积分10
15秒前
稳重母鸡完成签到 ,获得积分10
16秒前
22秒前
29秒前
行云流水完成签到,获得积分10
34秒前
daggeraxe完成签到 ,获得积分10
34秒前
虞无声完成签到,获得积分10
34秒前
光亮若翠发布了新的文献求助10
34秒前
小支完成签到 ,获得积分10
40秒前
焦一丹完成签到 ,获得积分10
47秒前
51秒前
小明完成签到 ,获得积分10
59秒前
kuyi完成签到 ,获得积分10
1分钟前
火星上誉完成签到 ,获得积分10
1分钟前
昏迷树袋熊完成签到 ,获得积分10
1分钟前
飘逸锦程完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
不甜的唐发布了新的文献求助10
1分钟前
yuyu877完成签到 ,获得积分10
1分钟前
李雨涵发布了新的文献求助10
1分钟前
hb完成签到,获得积分10
1分钟前
研友_VZG7GZ应助动听的雁枫采纳,获得10
1分钟前
1分钟前
自觉安荷完成签到 ,获得积分10
1分钟前
糖糖完成签到 ,获得积分10
1分钟前
1分钟前
微雨若,,完成签到 ,获得积分10
1分钟前
lzw123456完成签到,获得积分10
1分钟前
1分钟前
dejavu完成签到,获得积分10
1分钟前
WenJun完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281665
求助须知:如何正确求助?哪些是违规求助? 4435953
关于积分的说明 13806865
捐赠科研通 4316234
什么是DOI,文献DOI怎么找? 2369210
邀请新用户注册赠送积分活动 1364528
关于科研通互助平台的介绍 1328018