Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [BioMed Central]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唔惊完成签到,获得积分10
刚刚
青青发布了新的文献求助10
刚刚
梦秋思完成签到,获得积分10
1秒前
kuyng发布了新的文献求助10
1秒前
搞怪的友桃完成签到 ,获得积分10
1秒前
liuyue发布了新的文献求助10
3秒前
qqqq发布了新的文献求助10
3秒前
wy.he应助bingbing采纳,获得10
3秒前
丘比特应助San_Chen采纳,获得10
3秒前
Jouleken完成签到,获得积分10
4秒前
上官尔芙完成签到,获得积分10
5秒前
5秒前
哈哈2022完成签到,获得积分10
5秒前
李李完成签到,获得积分10
7秒前
灯火完成签到,获得积分10
7秒前
wen完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
小象完成签到,获得积分10
8秒前
华仔应助木木三采纳,获得10
8秒前
9秒前
沉默画板完成签到 ,获得积分10
9秒前
有风的地方完成签到 ,获得积分10
9秒前
卡卡罗特先森完成签到 ,获得积分10
9秒前
ailyna发布了新的文献求助10
10秒前
10秒前
10秒前
ctomit发布了新的文献求助200
10秒前
bingbing完成签到,获得积分10
11秒前
朱建军应助yoyoo采纳,获得10
11秒前
斯文败类应助yyyy采纳,获得30
11秒前
haokeyan完成签到,获得积分10
12秒前
12秒前
fan发布了新的文献求助10
12秒前
lieditongxu发布了新的文献求助10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086