A Novel Convolutional Neural Network Model as an Alternative Approach to Bowel Preparation Evaluation Before Colonoscopy in the COVID-19 Era: A Multicenter, Single-Blinded, Randomized Study

医学 结肠镜检查 随机对照试验 肠道准备 卷积神经网络 腺瘤 泻药 结直肠癌 胃肠病学 内科学 人工智能 计算机科学 癌症
作者
Yang‐Bor Lu,Si‐Cun Lu,Yung‐Ning Huang,Shuntian Cai,Puo‐Hsien Le,Fang‐Yu Hsu,Yanxing Hu,Hui‐Shan Hsieh,Wei-Ting Chen,Guili Xia,Hongzhi Xu,Wei Gong
出处
期刊:The American Journal of Gastroenterology [Lippincott Williams & Wilkins]
卷期号:117 (9): 1437-1443 被引量:13
标识
DOI:10.14309/ajg.0000000000001900
摘要

Adequate bowel preparation is key to a successful colonoscopy, which is necessary for detecting adenomas and preventing colorectal cancer. We developed an artificial intelligence (AI) platform using a convolutional neural network (CNN) model (AI-CNN model) to evaluate the quality of bowel preparation before colonoscopy.This was a colonoscopist-blinded, randomized study. Enrolled patients were randomized into an experimental group, in which our AI-CNN model was used to evaluate the quality of bowel preparation (AI-CNN group), or a control group, which performed self-evaluation per routine practice (control group). The primary outcome was the consistency (homogeneity) between the results of the 2 methods. The secondary outcomes included the quality of bowel preparation according to the Boston Bowel Preparation Scale (BBPS), polyp detection rate, and adenoma detection rate.A total of 1,434 patients were enrolled (AI-CNN, n = 730; control, n = 704). No significant difference was observed between the evaluation results ("pass" or "not pass") of the groups in the adequacy of bowel preparation as represented by BBPS scores. The mean BBPS scores, polyp detection rate, and adenoma detection rate were similar between the groups. These results indicated that the AI-CNN model and routine practice were generally consistent in the evaluation of bowel preparation quality. However, the mean BBPS score of patients with "pass" results were significantly higher in the AI-CNN group than in the control group, indicating that the AI-CNN model may further improve the quality of bowel preparation in patients exhibiting adequate bowel preparation.The novel AI-CNN model, which demonstrated comparable outcomes to the routine practice, may serve as an alternative approach for evaluating bowel preparation quality before colonoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡戎529完成签到 ,获得积分10
刚刚
33完成签到 ,获得积分10
刚刚
开飞机的天天完成签到,获得积分10
2秒前
逍遥自在完成签到,获得积分10
3秒前
YUkiii完成签到,获得积分10
4秒前
xinchengzhu完成签到 ,获得积分10
4秒前
7秒前
英姑应助内向怀曼采纳,获得10
8秒前
云与海完成签到,获得积分10
9秒前
11秒前
隐形曼青应助TJJJJJ采纳,获得10
11秒前
helloworld完成签到,获得积分10
11秒前
tian发布了新的文献求助10
12秒前
tong童完成签到 ,获得积分10
15秒前
16秒前
大猫不吃鱼完成签到,获得积分10
16秒前
活力雁枫完成签到,获得积分10
17秒前
铱铱的胡萝卜完成签到,获得积分10
19秒前
19秒前
着急的千山完成签到 ,获得积分10
20秒前
量子力学完成签到,获得积分10
20秒前
g0123完成签到,获得积分10
21秒前
share完成签到 ,获得积分10
22秒前
liu完成签到,获得积分10
22秒前
11111112222完成签到,获得积分10
22秒前
支雨泽完成签到,获得积分10
23秒前
kimiwanano完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
ATTENTION完成签到,获得积分10
25秒前
25秒前
铁甲小杨完成签到,获得积分0
25秒前
ZY完成签到 ,获得积分10
26秒前
fjmelite完成签到 ,获得积分10
26秒前
Amanda完成签到 ,获得积分20
27秒前
ssassassassa完成签到 ,获得积分10
27秒前
Iso完成签到,获得积分10
27秒前
Orange应助洁净斑马采纳,获得10
27秒前
panpanliumin完成签到,获得积分0
27秒前
28秒前
橙子完成签到,获得积分20
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027