A Novel Convolutional Neural Network Model as an Alternative Approach to Bowel Preparation Evaluation Before Colonoscopy in the COVID-19 Era: A Multicenter, Single-Blinded, Randomized Study

医学 结肠镜检查 随机对照试验 肠道准备 卷积神经网络 腺瘤 泻药 结直肠癌 胃肠病学 内科学 人工智能 计算机科学 癌症
作者
Yang‐Bor Lu,Si‐Cun Lu,Yung‐Ning Huang,Shuntian Cai,Puo‐Hsien Le,Fang‐Yu Hsu,Yanxing Hu,Hui‐Shan Hsieh,Chung‐Wei Su,Guili Xia,Hongzhi Xu,Wei Gong
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:117 (9): 1437-1443 被引量:11
标识
DOI:10.14309/ajg.0000000000001900
摘要

Adequate bowel preparation is key to a successful colonoscopy, which is necessary for detecting adenomas and preventing colorectal cancer. We developed an artificial intelligence (AI) platform using a convolutional neural network (CNN) model (AI-CNN model) to evaluate the quality of bowel preparation before colonoscopy.This was a colonoscopist-blinded, randomized study. Enrolled patients were randomized into an experimental group, in which our AI-CNN model was used to evaluate the quality of bowel preparation (AI-CNN group), or a control group, which performed self-evaluation per routine practice (control group). The primary outcome was the consistency (homogeneity) between the results of the 2 methods. The secondary outcomes included the quality of bowel preparation according to the Boston Bowel Preparation Scale (BBPS), polyp detection rate, and adenoma detection rate.A total of 1,434 patients were enrolled (AI-CNN, n = 730; control, n = 704). No significant difference was observed between the evaluation results ("pass" or "not pass") of the groups in the adequacy of bowel preparation as represented by BBPS scores. The mean BBPS scores, polyp detection rate, and adenoma detection rate were similar between the groups. These results indicated that the AI-CNN model and routine practice were generally consistent in the evaluation of bowel preparation quality. However, the mean BBPS score of patients with "pass" results were significantly higher in the AI-CNN group than in the control group, indicating that the AI-CNN model may further improve the quality of bowel preparation in patients exhibiting adequate bowel preparation.The novel AI-CNN model, which demonstrated comparable outcomes to the routine practice, may serve as an alternative approach for evaluating bowel preparation quality before colonoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
钰凛发布了新的文献求助10
1秒前
2秒前
天天快乐应助没事哒采纳,获得10
3秒前
4秒前
树叶完成签到,获得积分20
4秒前
Accepted应助Only采纳,获得10
4秒前
落尘完成签到,获得积分10
4秒前
三张完成签到 ,获得积分10
5秒前
彭于晏应助研友_V8Qmr8采纳,获得10
6秒前
坚强的代曼完成签到,获得积分10
7秒前
7秒前
5mg发布了新的文献求助30
8秒前
帅帅发布了新的文献求助10
8秒前
azure完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
hxy完成签到,获得积分10
12秒前
科研通AI2S应助曾经问玉采纳,获得10
12秒前
天天快乐应助ure采纳,获得10
12秒前
橄榄囚徒完成签到 ,获得积分10
13秒前
14秒前
lvsehx发布了新的文献求助10
14秒前
从容芮应助5mg采纳,获得10
14秒前
17秒前
hxy发布了新的文献求助10
18秒前
乐乐发布了新的文献求助10
18秒前
笑傲江湖完成签到,获得积分10
19秒前
大慧慧发布了新的文献求助10
20秒前
pyc076发布了新的文献求助10
21秒前
慕青应助良药采纳,获得10
21秒前
耍酷的寄凡完成签到,获得积分10
22秒前
22秒前
快乐的七宝完成签到 ,获得积分10
22秒前
wzx完成签到,获得积分10
23秒前
乐风完成签到 ,获得积分10
24秒前
123456发布了新的文献求助10
24秒前
十一嘞完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376