重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Venting composition and rate of large-format LiNi0.8Co0.1Mn0.1O2 pouch power battery during thermal runaway

热失控 气体成分 电池(电) 材料科学 热的 锂(药物) 核工程 环境科学 功率(物理) 热力学 物理 医学 工程类 内分泌学
作者
Kaiyu Zou,Kun He,Shouxiang Lu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:195: 123133-123133 被引量:35
标识
DOI:10.1016/j.ijheatmasstransfer.2022.123133
摘要

Lithium-ion batteries have been widely used as a power supply and energy storage device, but safety issues such as thermal runaway still make the application not very optimistic. Venting is one of the thermal runaway characteristics of lithium-ion batteries. The gas composition and venting rate is of far-reaching significance for evaluating the impact of batteries on the environment and people, predicting and simulating the development of thermal safety events. Therefore, in this study, a large-format pouch power battery (LiNi0.8Co0.1Mn0.1O2) was investigated for venting during thermal runaway, including composition and rate. The thermal runaway processes of 0%, 50%, and 100% SOC cells were analyzed according to the temperature, pressure, and video recordings. The gas chromatograph-mass spectrometer (GC-MS) was used to comprehensively identify the venting gas composition of cells. Results show that with the increase of SOC, the gas production composition of the battery became more complex, and the marked gas concentration was higher. The gas and heat production of the cells also increased accordingly. The gas production mechanism of the thermal runaway cells is revealed, and it is believed that the increase in the amount of lithium intercalation in the negative electrode enables more gas production reactions to occur more thoroughly. Besides, three methods for predicting the cell's venting rate based on mass loss, temperature and pressure changes, and gas concentration are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duran完成签到,获得积分10
刚刚
jinze完成签到,获得积分10
刚刚
ding应助wz采纳,获得10
1秒前
Fool完成签到,获得积分20
1秒前
汉堡包应助破晓采纳,获得10
1秒前
WangY1263发布了新的文献求助10
1秒前
1秒前
超帅鸭子发布了新的文献求助10
2秒前
禾研发布了新的文献求助20
2秒前
yisen完成签到,获得积分10
2秒前
搜集达人应助黄启烽采纳,获得10
3秒前
坐标发布了新的文献求助10
3秒前
4秒前
酷波er应助Gasoline.采纳,获得10
4秒前
Hello应助浊酒采纳,获得10
4秒前
4秒前
5秒前
Vera完成签到,获得积分10
5秒前
芃芃野发布了新的文献求助30
5秒前
科研通AI6应助仙妮宝贝采纳,获得10
5秒前
ggg完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
intfrac完成签到,获得积分10
6秒前
海绵宝宝的做饭铲完成签到,获得积分10
7秒前
科研通AI6应助雪白的友安采纳,获得10
7秒前
8秒前
深情安青应助无足鸟采纳,获得10
8秒前
情怀应助做锤子的医学采纳,获得10
8秒前
猫儿发布了新的文献求助10
8秒前
温可可发布了新的文献求助10
9秒前
LILI2完成签到,获得积分10
9秒前
慕青应助风清扬采纳,获得10
9秒前
飞快的雁发布了新的文献求助10
9秒前
研友_nVqwxL发布了新的文献求助20
9秒前
9秒前
科研通AI6应助靖哥哥采纳,获得10
10秒前
轩辕士晋完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612