Underwater image enhancement based on color restoration and dual image wavelet fusion

人工智能 计算机视觉 图像复原 计算机科学 水下 小波 对偶(语法数字) 图像融合 图像(数学) 图像处理 地质学 艺术 海洋学 文学类
作者
Yifan Huang,Fei Yuan,Fengqi Xiao,En Cheng
出处
期刊:Signal Processing-image Communication [Elsevier]
卷期号:107: 116797-116797 被引量:2
标识
DOI:10.1016/j.image.2022.116797
摘要

Due to the severe light absorption and scattering, underwater images often exhibit problems such as low contrast, detail blurring, color attenuation, and low illumination. To address these issues, this paper presents a two-step strategy based on color restoration and image fusion by combining deep learning and conventional image enhancement technologies to improve the visual performance of underwater images. First, an adaptive color compensation method is proposed to make up for the loss of severely attenuated channels. Color restoration is further implemented to estimate the illuminant color cast caused by the selective attenuation of light. Since the underwater image after color restoration still suffers from scattering and blurring, an effective method based on dual image wavelet fusion (DIWF) and Generative Adversarial Network (GAN) is designed to further enhance the edge details and improve the contrast of the color restored image. Experiments demonstrate that the proposed method significantly outperforms several state-of-the-arts in both qualitative and quantitative qualities. The approach can achieve better performance of color restoration, blur removal, and low illumination enhancement. • The paper presents an approach by integrating data-driven deep learning and hand-crafted image enhancement for the single underwater image enhancement. We argue that it is impractical only to use one method to deal with the complex underwater imaging environment. By combining deep learning and image enhancement technology, the model can process images obtained in various underwater scenes. • The paper presents an adaptive color compensation method to make up for the loss of severely attenuated channels, and color restoration is further implemented to estimate the illuminant color cast caused by the selective attenuation of light. • Since the underwater image after color restoration still suffers from scattering and blurring, an effective method based on dual image wavelet fusion (DIWF) and Generative Adversarial Network (GAN) is designed to further enhance the edge details and improve the contrast of the color restored image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
yelis完成签到 ,获得积分10
9秒前
汉堡包应助大虾采纳,获得10
10秒前
你好完成签到 ,获得积分10
12秒前
夏天发布了新的文献求助10
12秒前
12秒前
十一发布了新的文献求助10
14秒前
15秒前
SUKAILIMAI发布了新的文献求助10
16秒前
自然山水完成签到 ,获得积分10
17秒前
jekin完成签到,获得积分20
19秒前
陶醉的海冬完成签到 ,获得积分10
19秒前
等风的人发布了新的文献求助10
21秒前
思源应助爱笑的雪糕采纳,获得10
21秒前
22秒前
调皮班发布了新的文献求助10
23秒前
内向的元霜完成签到,获得积分20
24秒前
24秒前
24秒前
25秒前
汉堡包应助远志采纳,获得10
26秒前
闫闫发布了新的文献求助10
31秒前
31秒前
33秒前
旧城旧巷等旧人完成签到 ,获得积分10
33秒前
研友_nxGOmL完成签到,获得积分20
36秒前
张信发布了新的文献求助10
36秒前
37秒前
落星完成签到,获得积分10
38秒前
SciGPT应助HCCLZ采纳,获得10
38秒前
HC完成签到 ,获得积分10
38秒前
kaustal完成签到,获得积分10
39秒前
调皮班完成签到,获得积分10
40秒前
41秒前
41秒前
42秒前
cocolu应助爱笑的雪糕采纳,获得10
44秒前
46秒前
46秒前
46秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267792
求助须知:如何正确求助?哪些是违规求助? 2907197
关于积分的说明 8340871
捐赠科研通 2577894
什么是DOI,文献DOI怎么找? 1401256
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634036