自愈水凝胶
细胞外基质
再生(生物学)
间充质干细胞
生物医学工程
化学
脚手架
材料科学
生物材料
纳米技术
生物物理学
细胞生物学
生物化学
高分子化学
生物
医学
作者
Zhicheng Cao,Hongmei Wang,Jialin Chen,Yanan Zhang,Qingyun Mo,Po Zhang,Mingyue Wang,Haoyang Liu,Xueyang Bao,Yuzhi Sun,Wei Zhang,Qingqiang Yao
标识
DOI:10.1016/j.bioactmat.2022.05.025
摘要
Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration. The incorporation of CuTA nanozymes endowed the SF hydrogel with a uniform microstructure and elevated hydrophilicity. In vitro cultivation of mesenchymal stem cells (MSCs) and chondrocytes showed that CuTA@SF hydrogel accelerated cell proliferation and enhanced cell viability, as well as had antioxidant and antibacterial properties. Under the inflammatory environment with the stimulation of IL-1β, CuTA@SF hydrogel still possessed the potential to promote MSC osteogenesis and deposition of cartilage-specific extracellular matrix (ECM). The proteomics analysis further confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. In the full-thickness OCD model of rabbit, CuTA@SF hydrogel displayed successfully in situ OCD regeneration, as evidenced by micro-CT, histology (HE, S/O, and toluidine blue staining) and immunohistochemistry (Col I and aggrecan immunostaining). Therefore, CuTA@SF hydrogel is a promising biomaterial targeted at the regeneration of OCD.
科研通智能强力驱动
Strongly Powered by AbleSci AI