已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms

点云 滤波器(信号处理) 交叉口(航空) 计算机科学 配体(生物化学) Atom(片上系统) 分割 鉴定(生物学) 特征(语言学) 蛋白质结构 人工智能 生物系统 模式识别(心理学) 化学 计算机视觉 生物 地理 语言学 受体 嵌入式系统 哲学 生物化学 植物 地图学
作者
Yan Xu,Yingfeng Lu,Zhen Li,Qing Wei,Xin Gao,Sheng Wang,Song Wu,Shuguang Cui
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (11): 2835-2845 被引量:64
标识
DOI:10.1021/acs.jcim.1c01512
摘要

Accurate identification of ligand binding sites (LBS) on a protein structure is critical for understanding protein function and designing structure-based drugs. As the previous pocket-centric methods are usually based on the investigation of pseudo-surface-points outside the protein structure, they cannot fully take advantage of the local connectivity of atoms within the protein, as well as the global 3D geometrical information from all the protein atoms. In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. Specifically, we first transfer the original 3D protein structure to point clouds and then conduct segmentation through Submanifold Sparse Convolution based U-Net. With the fine-grained atom-level binding atoms representation and enhanced feature learning, PointSite can outperform previous methods in atom Intersection over Union (atom-IoU) by a large margin. Furthermore, our segmented binding atoms, that is, atoms with high probability predicted by our model can work as a filter on predictions achieved by previous pocket-centric approaches, which significantly decreases the false-positive of LBS candidates. Besides, we further directly extend PointSite trained on bound proteins for LBS identification on unbound proteins, which demonstrates the superior generalization capacity of PointSite. Through cascaded filter and reranking aided by the segmented atoms, state-of-the-art performance can be achieved over various canonical benchmarks, CAMEO hard targets, and unbound proteins in terms of the commonly used DCA criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁雨蕾发布了新的文献求助10
1秒前
向心发布了新的文献求助30
1秒前
李健应助幼儿园老大采纳,获得10
1秒前
Moo5_zzZ发布了新的文献求助10
2秒前
华仔应助小乔采纳,获得10
2秒前
4秒前
FashionBoy应助Li采纳,获得10
5秒前
syalonyui发布了新的文献求助10
5秒前
7秒前
迷路芒果完成签到,获得积分10
9秒前
sue发布了新的文献求助10
9秒前
朴素难敌完成签到,获得积分10
10秒前
Fosuer_3完成签到,获得积分10
11秒前
聪明夏波发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
积极彩虹完成签到,获得积分10
12秒前
15秒前
脑洞疼应助宁雨蕾采纳,获得10
15秒前
Fosuer_3发布了新的文献求助10
17秒前
怪怪完成签到 ,获得积分10
17秒前
lld发布了新的文献求助10
18秒前
18秒前
HightLight发布了新的文献求助10
19秒前
羞涩的傲菡完成签到,获得积分10
21秒前
22秒前
肥牛发布了新的文献求助10
23秒前
福娃哇完成签到 ,获得积分10
24秒前
HightLight完成签到,获得积分10
26秒前
搜集达人应助聪明夏波采纳,获得10
28秒前
29秒前
30秒前
Tanya47应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
bkagyin应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得30
33秒前
33秒前
6666发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834