PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms

点云 滤波器(信号处理) 交叉口(航空) 计算机科学 配体(生物化学) Atom(片上系统) 分割 鉴定(生物学) 特征(语言学) 蛋白质结构 人工智能 生物系统 模式识别(心理学) 化学 计算机视觉 生物 地理 生物化学 植物 受体 地图学 语言学 哲学 嵌入式系统
作者
Yan Xu,Yingfeng Lu,Zhen Li,Qing Wei,Xin Gao,Sheng Wang,Song Wu,Shuguang Cui
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (11): 2835-2845 被引量:45
标识
DOI:10.1021/acs.jcim.1c01512
摘要

Accurate identification of ligand binding sites (LBS) on a protein structure is critical for understanding protein function and designing structure-based drugs. As the previous pocket-centric methods are usually based on the investigation of pseudo-surface-points outside the protein structure, they cannot fully take advantage of the local connectivity of atoms within the protein, as well as the global 3D geometrical information from all the protein atoms. In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. Specifically, we first transfer the original 3D protein structure to point clouds and then conduct segmentation through Submanifold Sparse Convolution based U-Net. With the fine-grained atom-level binding atoms representation and enhanced feature learning, PointSite can outperform previous methods in atom Intersection over Union (atom-IoU) by a large margin. Furthermore, our segmented binding atoms, that is, atoms with high probability predicted by our model can work as a filter on predictions achieved by previous pocket-centric approaches, which significantly decreases the false-positive of LBS candidates. Besides, we further directly extend PointSite trained on bound proteins for LBS identification on unbound proteins, which demonstrates the superior generalization capacity of PointSite. Through cascaded filter and reranking aided by the segmented atoms, state-of-the-art performance can be achieved over various canonical benchmarks, CAMEO hard targets, and unbound proteins in terms of the commonly used DCA criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执意完成签到 ,获得积分10
刚刚
球宝完成签到,获得积分10
刚刚
mia完成签到,获得积分10
1秒前
向雅完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
爆米花应助舒心衣采纳,获得10
3秒前
4秒前
一朵小鲜花儿完成签到,获得积分10
4秒前
Uki完成签到,获得积分10
4秒前
Sodagreen2023完成签到,获得积分10
4秒前
wuhu发布了新的文献求助10
4秒前
Profeto应助yoyo20012623采纳,获得10
5秒前
英俊的铭应助标致嫣采纳,获得10
5秒前
向言之完成签到,获得积分10
5秒前
潇湘夜雨完成签到,获得积分10
5秒前
xiaoliu发布了新的文献求助10
6秒前
黑就嘿完成签到,获得积分10
6秒前
踏实的无敌完成签到,获得积分10
6秒前
ethan2801完成签到,获得积分10
6秒前
白石溪完成签到,获得积分10
6秒前
weiyongswust发布了新的文献求助10
7秒前
8秒前
快乐的鱼完成签到,获得积分10
8秒前
sssssssssss完成签到,获得积分10
8秒前
zheng完成签到 ,获得积分10
10秒前
小胡完成签到,获得积分20
14秒前
大气的裙子完成签到,获得积分10
15秒前
15秒前
xy小侠女完成签到,获得积分10
15秒前
文艺小馒头完成签到,获得积分10
15秒前
亭子完成签到,获得积分10
17秒前
zero完成签到,获得积分10
17秒前
华仔应助abc采纳,获得10
17秒前
Kay76完成签到,获得积分10
18秒前
123完成签到,获得积分10
18秒前
luwenxuan完成签到,获得积分10
18秒前
村上春树的摩的完成签到 ,获得积分10
18秒前
dachengzi完成签到,获得积分10
18秒前
健康的绮晴完成签到,获得积分10
19秒前
xiaoliu完成签到,获得积分20
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027