已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms

点云 滤波器(信号处理) 交叉口(航空) 计算机科学 配体(生物化学) Atom(片上系统) 分割 鉴定(生物学) 特征(语言学) 蛋白质结构 人工智能 生物系统 模式识别(心理学) 化学 计算机视觉 生物 地理 生物化学 植物 受体 地图学 语言学 哲学 嵌入式系统
作者
Yan Xu,Yingfeng Lu,Zhen Li,Qing Wei,Xin Gao,Sheng Wang,Song Wu,Shuguang Cui
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (11): 2835-2845 被引量:45
标识
DOI:10.1021/acs.jcim.1c01512
摘要

Accurate identification of ligand binding sites (LBS) on a protein structure is critical for understanding protein function and designing structure-based drugs. As the previous pocket-centric methods are usually based on the investigation of pseudo-surface-points outside the protein structure, they cannot fully take advantage of the local connectivity of atoms within the protein, as well as the global 3D geometrical information from all the protein atoms. In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. Specifically, we first transfer the original 3D protein structure to point clouds and then conduct segmentation through Submanifold Sparse Convolution based U-Net. With the fine-grained atom-level binding atoms representation and enhanced feature learning, PointSite can outperform previous methods in atom Intersection over Union (atom-IoU) by a large margin. Furthermore, our segmented binding atoms, that is, atoms with high probability predicted by our model can work as a filter on predictions achieved by previous pocket-centric approaches, which significantly decreases the false-positive of LBS candidates. Besides, we further directly extend PointSite trained on bound proteins for LBS identification on unbound proteins, which demonstrates the superior generalization capacity of PointSite. Through cascaded filter and reranking aided by the segmented atoms, state-of-the-art performance can be achieved over various canonical benchmarks, CAMEO hard targets, and unbound proteins in terms of the commonly used DCA criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
刚刚
星辰大海应助XZC采纳,获得10
刚刚
顾矜应助jefflin采纳,获得30
1秒前
叶航发布了新的文献求助10
2秒前
希望天下0贩的0应助Emma Lee采纳,获得10
2秒前
tS717完成签到,获得积分10
2秒前
3秒前
充电宝应助蒋蒋蒋蒋采纳,获得30
4秒前
kuku_99发布了新的文献求助10
4秒前
hhhhhw完成签到,获得积分10
6秒前
6秒前
花七童完成签到,获得积分10
7秒前
CipherSage应助盖伊福克斯采纳,获得10
8秒前
XZC完成签到,获得积分10
9秒前
tS717发布了新的文献求助10
9秒前
小吴同学发布了新的文献求助10
10秒前
11秒前
微笑的井完成签到 ,获得积分10
12秒前
orange完成签到,获得积分10
12秒前
13秒前
15秒前
六月完成签到,获得积分10
15秒前
披日悬光完成签到 ,获得积分10
15秒前
小吴同学完成签到,获得积分10
15秒前
XZC发布了新的文献求助10
16秒前
Akim应助韩明佐采纳,获得10
18秒前
牛鞭汤烤羊腿完成签到,获得积分10
18秒前
喃义发布了新的文献求助10
18秒前
lxl关闭了lxl文献求助
19秒前
浮游应助无端采纳,获得10
19秒前
含糊的电源完成签到,获得积分10
20秒前
我我完成签到 ,获得积分10
20秒前
20秒前
WenzhengXu发布了新的文献求助30
20秒前
20秒前
浮游应助淡然的妙芙采纳,获得30
21秒前
科研通AI6应助kuku_99采纳,获得10
22秒前
22秒前
善良谷蓝完成签到 ,获得积分10
23秒前
JamesPei应助zorro3574采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969