PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms

点云 滤波器(信号处理) 交叉口(航空) 计算机科学 配体(生物化学) Atom(片上系统) 分割 鉴定(生物学) 特征(语言学) 蛋白质结构 人工智能 结晶学 生物系统 模式识别(心理学) 化学 计算机视觉 生物 地理 生物化学 植物 受体 地图学 语言学 哲学 嵌入式系统
作者
Yan Xu,Yingfeng Lu,Zhen Li,Qing Wei,Xin Gao,Sheng Wang,Song Wu,Shuguang Cui
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (11): 2835-2845 被引量:36
标识
DOI:10.1021/acs.jcim.1c01512
摘要

Accurate identification of ligand binding sites (LBS) on a protein structure is critical for understanding protein function and designing structure-based drugs. As the previous pocket-centric methods are usually based on the investigation of pseudo-surface-points outside the protein structure, they cannot fully take advantage of the local connectivity of atoms within the protein, as well as the global 3D geometrical information from all the protein atoms. In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. Specifically, we first transfer the original 3D protein structure to point clouds and then conduct segmentation through Submanifold Sparse Convolution based U-Net. With the fine-grained atom-level binding atoms representation and enhanced feature learning, PointSite can outperform previous methods in atom Intersection over Union (atom-IoU) by a large margin. Furthermore, our segmented binding atoms, that is, atoms with high probability predicted by our model can work as a filter on predictions achieved by previous pocket-centric approaches, which significantly decreases the false-positive of LBS candidates. Besides, we further directly extend PointSite trained on bound proteins for LBS identification on unbound proteins, which demonstrates the superior generalization capacity of PointSite. Through cascaded filter and reranking aided by the segmented atoms, state-of-the-art performance can be achieved over various canonical benchmarks, CAMEO hard targets, and unbound proteins in terms of the commonly used DCA criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chshj完成签到,获得积分10
1秒前
2秒前
lch完成签到,获得积分10
3秒前
高级后勤发布了新的文献求助10
3秒前
窝趣嘞发布了新的文献求助10
4秒前
木木发布了新的文献求助10
4秒前
干净的时光应助ggg采纳,获得10
5秒前
顾矜应助chshj采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得50
5秒前
Luo应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
波风水门pxf完成签到 ,获得积分10
6秒前
深情安青应助honeyoko采纳,获得10
8秒前
wbhou完成签到 ,获得积分10
9秒前
酷酷幻梦发布了新的文献求助10
10秒前
11秒前
12秒前
viavia完成签到,获得积分10
12秒前
tzj完成签到,获得积分10
12秒前
13秒前
华仔应助Kaysen92采纳,获得10
15秒前
15秒前
17秒前
Ayo发布了新的文献求助10
17秒前
丰富山灵完成签到,获得积分10
18秒前
LIGHT完成签到,获得积分10
18秒前
18秒前
wuyan发布了新的文献求助10
18秒前
飞快的金鑫应助Liu采纳,获得50
19秒前
move完成签到 ,获得积分10
19秒前
科研通AI2S应助...采纳,获得10
19秒前
dfg完成签到,获得积分20
20秒前
Lucas应助Lvhao采纳,获得10
21秒前
丰富山灵发布了新的文献求助30
21秒前
梁漂亮发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012