纳滤
聚酰胺
膜
过氧化氢
化学工程
结垢
氧化剂
膜污染
化学
材料科学
有机化学
生物化学
工程类
作者
Jinxuan Zhang,Huiru Zhang,Yinhua Wan,Jianquan Luo
标识
DOI:10.1021/acsami.1c23466
摘要
Chemical cleaning is indispensable for the sustainable operation of nanofiltration (NF) in wastewater treatment. However, the common chemical cleaning methods are plagued by low cleaning efficiency, high chemical consumption, and separation performance deterioration. In this work, a chemoenzymatic cascade reaction is proposed for pollutant degradation and polyamide NF membrane cleaning. Glucose oxidase (GOD) enzymatic reaction in this cascade system produces hydrogen peroxide (H2O2) and gluconic acid to trigger the oxidation of foulants by Fe3O4-catalyzed Fenton reaction. By virtue of the microenvironment (pH and H2O2 concentration) engineering and substrate enrichments, this chemoenzymatic cascade reaction (GOD-Fe3O4) exhibits a favorable degradation efficiency for bisphenol A and methyl blue (MB). Thanks to the strong oxidizing degradation, the water flux of the NF10 membrane fouled by MB is almost completely recovered (∼95.8%) after a 3-cycle fouling/cleaning experiment. Meanwhile, the chemoenzymatic cascade reaction improves the applicability of the Fenton reaction in polyamide NF membrane cleaning because it prevents the membrane from damaging by high concentration of H2O2 and inhibits the secondary fouling caused by ferric hydroxide precipitates. By immobilizing GOD on the aminated Fe3O4 nanoparticles, a reusable cleaning agent is prepared for highly efficient membrane cleaning. This chemoenzymatic cascade reaction without the addition of an acid/base/oxidant provides a promising candidate for sustainable and cost-effective cleaning for the polyamide NF membrane.
科研通智能强力驱动
Strongly Powered by AbleSci AI