Hindsight bias for emotional faces.

事后诸葛亮 心理学 心理信息 认知心理学 情感表达 面部表情 召回 认知偏差 借记 社会心理学 响应偏差 发展心理学 认知 沟通 神经科学 法学 梅德林 政治学
作者
Megan E. Giroux,Michelle C. Hunsche,Edgar Erdfelder,Ragav Kumar,Daniel M. Bernstein
出处
期刊:Emotion [American Psychological Association]
卷期号:23 (1): 261-277 被引量:2
标识
DOI:10.1037/emo0001068
摘要

People who learn the outcome to a situation or problem tend to overestimate what was known in the past-this is hindsight bias. Whereas previous research has revealed robust hindsight bias in the visual domain, little is known about how outcome information affects our memory of others' emotional expressions. The goal of the current work was to test whether participants exhibited hindsight bias for emotional faces and whether this varied as a function of emotion. Across five experiments, participants saw images of faces displaying different emotions. In the foresight phase, participants watched several emotional faces gradually clarify from blurry to clear. Once participants believed they knew what emotion the face was exhibiting, they identified the emotion from several options (e.g., angry, disgusted, happy, scared, surprised). In the hindsight phase, participants saw clear versions of each face before stopping the clarification at the point at which they previously identified the emotional expression. On average, participants exhibited hindsight bias for all emotions except happy faces (i.e., they indicated that they identified the emotional expressions at a blurrier point in hindsight than they had in foresight). A multinomial processing tree model of our data revealed that this was not due to participants' better recollection of foresight judgments for happy faces compared to the other emotions. Additionally, participants showed a smaller reconstruction bias for happy faces than the other emotions. We discuss the social implications of these findings as well as the potential for this paradigm to be used across cultures and ages. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六发布了新的文献求助10
刚刚
hardyx关注了科研通微信公众号
刚刚
2秒前
2秒前
薛定谔的柯基完成签到,获得积分10
2秒前
祝愿发布了新的文献求助10
4秒前
4秒前
4秒前
Hello应助胡巴采纳,获得10
5秒前
5秒前
丰富的听云完成签到,获得积分10
5秒前
bkagyin应助sunguangbin采纳,获得10
6秒前
7秒前
星辉斑斓完成签到,获得积分10
7秒前
7秒前
认真念梦发布了新的文献求助10
7秒前
铭泽完成签到,获得积分20
8秒前
8秒前
sy6666完成签到,获得积分10
8秒前
dahafei发布了新的文献求助10
8秒前
科研通AI2S应助lhz采纳,获得10
9秒前
10秒前
六六完成签到,获得积分10
11秒前
zzw发布了新的文献求助10
11秒前
123应助coo采纳,获得20
11秒前
帅帅哈完成签到,获得积分10
13秒前
嘉心糖应助宋文娟采纳,获得20
13秒前
铭泽发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
yukang完成签到,获得积分10
18秒前
llling发布了新的文献求助10
19秒前
倒数21发布了新的文献求助10
19秒前
yls发布了新的文献求助10
20秒前
21秒前
helinchen完成签到,获得积分10
21秒前
寻觅完成签到,获得积分10
21秒前
22秒前
FUN完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263