Evaluating soil erosion by introducing crop residue cover and anthropogenic disturbance intensity into cropland C-factor calculation: Novel estimations from a cropland-dominant region of Northeast China

环境科学 通用土壤流失方程 覆盖作物 腐蚀 农业 土地覆盖 水文学(农业) 植被(病理学) 土地利用 农用地 土壤科学 农林复合经营 地质学 土壤流失 地理 生态学 岩土工程 考古 古生物学 病理 生物 医学
作者
Wei Wan,Liu Zhong,Baoguo Li,Haiyan Fang,Hanqing Wu,Haoyu Yang
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:219: 105343-105343 被引量:34
标识
DOI:10.1016/j.still.2022.105343
摘要

The black-land in Northeast China is one of three black-lands in the world and has become the largest grain producing area and commercial grain base of China. Therefore, black-land soil erosion caused by natural factors and human activities has attracted much attention. The Revised Universal Soil Loss Equation (RUSLE) developed by the Agriculture Research Service of the United States Department of Agriculture provides a comprehensive framework for assessing soil erosion and has been widely applied all over the world. Compared with factors such as rainfall erosivity, soil erodibility, topography, and conservation practice, the vegetation coverage and management factor (C-factor in RUSLE) of cropland encompasses the most easily optimized measures. However, in some studies, the quantification of C-factor only considers vegetation cover and ignores other farmland management measures due to the limitation of field management information at regional scale, which implies a huge room for improvement in quantification of C-factor. In this study, the quantification of C-factor considered not only vegetation cover but also crop residue cover, agricultural machinery total power, and fertilizer application rate. Among them, the former is related to weakening soil erosivity, and the latter two are related to enhancing soil erosivity. Monitored sediment transport modulus (STM) at the sub-watershed scale was used to compare changes in the estimation accuracy of the soil erosion modulus (SEM) before and after improving the C-factor. The results showed that the improved cropland C-factor in RUSLE produced a better linear fit accuracy between SEM and STM, with an average increase of 0.115 for R2. Moreover, the order of SEM from high to low in different years was: 12.01 t·ha−1·y−1 (2019), 11.43 t·ha−1·yr−1 (2005), 11.17 t·ha−1·yr−1 (2010), 11.01 t·ha−1·yr−1 (2015), and 10.30 t·ha−1·yr−1 (2000), which was positively correlated with interannual variation of precipitation in Northeast China. Spatially, the order of multi-year average SEM in agricultural zones from high to low was as follows: 22.53 t·ha−1·yr−1 (Liaoning Plain and Hilly Zone; LPH), 20.44 t·ha−1·yr−1 (Baekdu Mountain Zone; BM), 15.11 t·ha−1·yr−1 (Western Liao River Zone; WLR), 11.36 t·ha−1·yr−1 (Lesser Khingan Mountain Zone; LKM), 7.56 t·ha−1·yr−1 (Greater Khingan Mountain Zone; GKM), 3.41 t·ha−1·yr−1 (Sanjiang Plain Zone; SJP), 3.14 t·ha−1·yr−1 (Songnen Plain Zone; SNP), and 2.06 t·ha−1·yr−1 (Hulunbuir Grassland Zone; HG), whereas the soil loss amount from high to low in various agricultural zones was in the order of BM > LPH > WLR > GKM > LKM > SNP > SJP > HG. Our study verified the feasibility of improving the C-factor of croplands in areas where cropland is the dominant land-use type. Moreover, our method will contribute to the use of RUSLE with higher precision in other regional-scale soil erosion assessments worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlnhyF完成签到,获得积分10
刚刚
pursuit完成签到,获得积分10
3秒前
Neltharion完成签到,获得积分10
4秒前
沈海完成签到,获得积分10
6秒前
悦耳傥完成签到 ,获得积分10
6秒前
一叶知秋应助大橙子采纳,获得10
6秒前
科研小能手完成签到,获得积分10
7秒前
guoxingliu发布了新的文献求助200
8秒前
Double_N完成签到,获得积分10
11秒前
路路完成签到 ,获得积分10
12秒前
碧蓝的盼夏完成签到,获得积分10
16秒前
AU完成签到 ,获得积分10
17秒前
研友_yLpYkn完成签到,获得积分10
18秒前
兴奋的定帮完成签到 ,获得积分0
19秒前
一叶知秋应助大橙子采纳,获得10
20秒前
21秒前
金蛋蛋完成签到 ,获得积分10
21秒前
马琛尧完成签到 ,获得积分10
23秒前
一行白鹭上青天完成签到 ,获得积分10
27秒前
帅气的宽完成签到 ,获得积分10
28秒前
lixoii完成签到 ,获得积分10
30秒前
萌萌许完成签到,获得积分10
30秒前
sunce1990完成签到 ,获得积分10
33秒前
Bin_Liu完成签到,获得积分20
34秒前
宇老师完成签到,获得积分10
34秒前
研友_VZG7GZ应助马琛尧采纳,获得10
35秒前
安安的小板栗完成签到,获得积分10
38秒前
123_完成签到,获得积分10
40秒前
NexusExplorer应助大橙子采纳,获得10
41秒前
上善若水完成签到 ,获得积分10
43秒前
qiqi发布了新的文献求助10
47秒前
47秒前
英俊的铭应助cm采纳,获得10
48秒前
49秒前
量子星尘发布了新的文献求助10
49秒前
affy210310完成签到,获得积分10
50秒前
名字不好起完成签到,获得积分10
50秒前
齐朕完成签到,获得积分10
51秒前
大橙子发布了新的文献求助10
53秒前
speed完成签到 ,获得积分10
54秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022