Machine learning assisted dual-emission fluorescence/colorimetric sensor array detection of multiple antibiotics under stepwise prediction strategy

荧光 传感器阵列 瓶颈 计算机科学 三元运算 随机森林 生物系统 遥感 人工智能 模式识别(心理学) 环境科学 机器学习 物理 光学 生物 地质学 嵌入式系统 程序设计语言
作者
Zijun Xu,Kejia Wang,Mengqian Zhang,Tianhao Wang,Xuejun Du,Zideng Gao,Shuwen Hu,Xueqin Ren,Haojie Feng
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:359: 131590-131590 被引量:31
标识
DOI:10.1016/j.snb.2022.131590
摘要

Effective sensors to detect antibiotics as environmental and health hazards are urgently needed. Herein, we constructed a dual-emission fluorescence/colorimetric sensor array based on novel high fluorescence quantum yield carbon dots and CdTe quantum dots. Multi-dimensional data (fluorescence intensities and maximum emission wavelengths) was used to establish a sensor array platform with improved specificity. To meet the challenges of establishing a unified model and detecting outside datasets samples, we innovatively built a unified SX-model using a “stepwise prediction” strategy combined with machine learning to screen optimal methods. By integrating classification and concentration models under a tree-based pipeline optimization technique framework, the extreme random forest was selected as the most accurate classification model. The sensor array detected nine antibiotics at 0.5–50 μM with 95% accuracy and 4.93% average concentration error for unknown samples outside the datasets. Simultaneous identification of binary and ternary mixed samples was also enhanced. Furthermore, antibiotics in 216 river water and milk samples were discriminated with 100% accuracy and 3.25% and 4.43% average concentration errors of unknown samples outside the datasets, respectively. Finally, antibiotics were completed visually identified. The proposed original SX-model assisted dual-emission sensor not only overcomes low specificity and immobility, but breaks the bottleneck of existing analysis methods showing great application potential in the array detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LIXI完成签到,获得积分10
刚刚
快乐的忆山完成签到,获得积分10
刚刚
愉快寒香发布了新的文献求助10
1秒前
2秒前
sjyu1985完成签到,获得积分10
2秒前
天才幸运鱼完成签到,获得积分10
2秒前
郝老头完成签到,获得积分10
3秒前
4秒前
yexing完成签到,获得积分10
4秒前
原野完成签到,获得积分10
5秒前
赖建琛完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
你好完成签到,获得积分10
7秒前
sallyshe完成签到,获得积分10
7秒前
安静的乐松完成签到,获得积分10
7秒前
zhang完成签到,获得积分10
7秒前
有我ID随机吗完成签到,获得积分10
7秒前
皓月当空完成签到,获得积分10
7秒前
高贵觅山完成签到,获得积分10
8秒前
Erizer完成签到,获得积分10
8秒前
双楠应助怡然云朵采纳,获得10
8秒前
司徒涟妖完成签到,获得积分10
8秒前
Yola完成签到,获得积分10
9秒前
情怀应助亮仔采纳,获得10
9秒前
英俊的铭应助普外科老白采纳,获得10
9秒前
ohno耶耶耶完成签到,获得积分10
9秒前
和和完成签到,获得积分10
9秒前
小啊刘呀发布了新的文献求助10
9秒前
10秒前
11秒前
鸣笛应助科研通管家采纳,获得20
11秒前
wind2631完成签到,获得积分10
11秒前
Chanyl发布了新的文献求助10
12秒前
哈哈完成签到,获得积分10
12秒前
江你一军完成签到,获得积分10
13秒前
Tomin完成签到,获得积分0
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855