催化作用
硼
硼化物
多相催化
材料科学
化学
纳米技术
化学工程
无机化学
有机化学
工程类
作者
Meihong Fan,Xiao Liang,Qiuju Li,Lili Cui,Xingquan He,Xiaoxin Zou
标识
DOI:10.1016/j.cclet.2022.02.080
摘要
Heterogeneous catalysis is a vivid branch of traditional catalysis field, with the advantage of high efficiency and being easily separated from reactants and products after reaction, and have received widespread attentions in large-scale industrial production, especially in the field of energy utilization. Boron has been found to be a key functional component for designing high-performance heterogeneous catalysts. In this review, we cover and categorize the past and recent progress in boron-containing materials and their applications in heterogeneous catalysis particularly in energy‐related fields. The fundamental roles of boron components in the emerging heterogeneous catalysis of construction, regulation and stabilization of active phases/sites are highlighted, with the emphasis on how they regulating structural and electronic properties of host materials. We then categorize boron-containing catalysts into six kinds mainly including intermetallic boride catalysts, metal boride-derived catalysts, boron-doped catalysts, metal boride-decorated catalysts, boron-containing compounds as catalyst supports, and single-boron-site catalysts, as well as try to establish structure-catalytic activity relationship. The catalytic applications of these six boron-containing catalysts are discussed separately, focusing on the energy-related reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR) and nitrogen reduction reaction (NRR). Finally, the opportunities and challenges related to boron-containing compounds in the field of catalysis are prospected.
科研通智能强力驱动
Strongly Powered by AbleSci AI