亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions

计算机科学 卷积神经网络 背景(考古学) 水准点(测量) 代表(政治) 人工神经网络 拓扑(电路) 过程(计算) 化学空间 集合(抽象数据类型) 功能(生物学) 人工智能 化学 数学 药物发现 古生物学 生物化学 大地测量学 组合数学 进化生物学 政治 政治学 法学 生物 程序设计语言 地理 操作系统
作者
Ankur K. Gupta,Krishnan Raghavachari
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (4): 2132-2143 被引量:5
标识
DOI:10.1021/acs.jctc.1c00504
摘要

Deep learning methods provide a novel way to establish a correlation between two quantities. In this context, computer vision techniques such as three-dimensional (3D)-convolutional neural networks become a natural choice to associate a molecular property with its structure due to the inherent 3D nature of a molecule. However, traditional 3D input data structures are intrinsically sparse in nature, which tend to induce instabilities during the learning process, which in turn may lead to underfitted results. To address this deficiency, in this project, we propose to use quantum-chemically derived molecular topological features, namely, localized orbital locator and electron localization function, as molecular descriptors, which provide a relatively denser input representation in a 3D space. Such topological features provide a detailed picture of the atomic and electronic configuration and interatomic interactions in the molecule and hence are ideal for predicting properties that are highly dependent on the physical or electronic structure of the molecule. Herein, we demonstrate the efficacy of our proposed model by applying it to the task of predicting atomization energies for the QM9-G4MP2 data set, which contains ∼134k molecules. Furthermore, we incorporated the Δ-machine learning approach into our model, which enabled us to reach beyond benchmark accuracy levels (∼1.0 kJ mol-1). As a result, we consistently obtain impressive mean absolute errors of the order 0.1 kcal mol-1 (∼0.42 kJ mol-1) versus the G4(MP2) theory using relatively modest models, which could potentially be improved further in a systematic manner using additional compute resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
符寄云发布了新的文献求助10
12秒前
16秒前
16秒前
jeff完成签到,获得积分10
23秒前
CC发布了新的文献求助20
29秒前
嘻嘻哈哈应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
酷波er应助yuxiazhengye采纳,获得10
41秒前
魏欣娜发布了新的文献求助10
54秒前
1分钟前
李爱国应助魏欣娜采纳,获得10
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
yuxiazhengye发布了新的文献求助10
1分钟前
1分钟前
yuxiazhengye完成签到,获得积分10
2分钟前
烟花应助supermaltose采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
supermaltose发布了新的文献求助10
2分钟前
2分钟前
2分钟前
冰可乐真的好喝完成签到,获得积分10
2分钟前
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得20
2分钟前
赘婿应助冰可乐真的好喝采纳,获得50
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482368
求助须知:如何正确求助?哪些是违规求助? 4583217
关于积分的说明 14388979
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432510