Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions

计算机科学 卷积神经网络 背景(考古学) 水准点(测量) 代表(政治) 人工神经网络 拓扑(电路) 过程(计算) 化学空间 集合(抽象数据类型) 功能(生物学) 人工智能 化学 数学 药物发现 古生物学 生物化学 大地测量学 组合数学 进化生物学 政治 政治学 法学 生物 程序设计语言 地理 操作系统
作者
Ankur K. Gupta,Krishnan Raghavachari
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (4): 2132-2143 被引量:5
标识
DOI:10.1021/acs.jctc.1c00504
摘要

Deep learning methods provide a novel way to establish a correlation between two quantities. In this context, computer vision techniques such as three-dimensional (3D)-convolutional neural networks become a natural choice to associate a molecular property with its structure due to the inherent 3D nature of a molecule. However, traditional 3D input data structures are intrinsically sparse in nature, which tend to induce instabilities during the learning process, which in turn may lead to underfitted results. To address this deficiency, in this project, we propose to use quantum-chemically derived molecular topological features, namely, localized orbital locator and electron localization function, as molecular descriptors, which provide a relatively denser input representation in a 3D space. Such topological features provide a detailed picture of the atomic and electronic configuration and interatomic interactions in the molecule and hence are ideal for predicting properties that are highly dependent on the physical or electronic structure of the molecule. Herein, we demonstrate the efficacy of our proposed model by applying it to the task of predicting atomization energies for the QM9-G4MP2 data set, which contains ∼134k molecules. Furthermore, we incorporated the Δ-machine learning approach into our model, which enabled us to reach beyond benchmark accuracy levels (∼1.0 kJ mol-1). As a result, we consistently obtain impressive mean absolute errors of the order 0.1 kcal mol-1 (∼0.42 kJ mol-1) versus the G4(MP2) theory using relatively modest models, which could potentially be improved further in a systematic manner using additional compute resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的雁芙完成签到,获得积分10
1秒前
脑洞疼应助故意的鸿涛采纳,获得10
1秒前
3秒前
BADGUY发布了新的文献求助10
3秒前
4秒前
6秒前
6秒前
6秒前
6秒前
6秒前
大龙哥886应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
十一应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
十一应助科研通管家采纳,获得10
7秒前
谦让觅风应助科研通管家采纳,获得30
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
优美紫槐发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
stand应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
积极幻然发布了新的文献求助30
11秒前
十三月发布了新的文献求助100
11秒前
momo发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513