Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions

计算机科学 卷积神经网络 背景(考古学) 水准点(测量) 代表(政治) 人工神经网络 拓扑(电路) 过程(计算) 化学空间 集合(抽象数据类型) 功能(生物学) 人工智能 化学 数学 药物发现 古生物学 生物化学 大地测量学 组合数学 进化生物学 政治 政治学 法学 生物 程序设计语言 地理 操作系统
作者
Ankur K. Gupta,Krishnan Raghavachari
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (4): 2132-2143 被引量:5
标识
DOI:10.1021/acs.jctc.1c00504
摘要

Deep learning methods provide a novel way to establish a correlation between two quantities. In this context, computer vision techniques such as three-dimensional (3D)-convolutional neural networks become a natural choice to associate a molecular property with its structure due to the inherent 3D nature of a molecule. However, traditional 3D input data structures are intrinsically sparse in nature, which tend to induce instabilities during the learning process, which in turn may lead to underfitted results. To address this deficiency, in this project, we propose to use quantum-chemically derived molecular topological features, namely, localized orbital locator and electron localization function, as molecular descriptors, which provide a relatively denser input representation in a 3D space. Such topological features provide a detailed picture of the atomic and electronic configuration and interatomic interactions in the molecule and hence are ideal for predicting properties that are highly dependent on the physical or electronic structure of the molecule. Herein, we demonstrate the efficacy of our proposed model by applying it to the task of predicting atomization energies for the QM9-G4MP2 data set, which contains ∼134k molecules. Furthermore, we incorporated the Δ-machine learning approach into our model, which enabled us to reach beyond benchmark accuracy levels (∼1.0 kJ mol-1). As a result, we consistently obtain impressive mean absolute errors of the order 0.1 kcal mol-1 (∼0.42 kJ mol-1) versus the G4(MP2) theory using relatively modest models, which could potentially be improved further in a systematic manner using additional compute resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
精明凡双应助64473791采纳,获得10
刚刚
红号完成签到,获得积分10
刚刚
huangqiuyan发布了新的文献求助10
刚刚
wanci应助阿宅采纳,获得10
刚刚
香蕉觅云应助kellywang采纳,获得10
刚刚
无情的笑萍完成签到,获得积分10
1秒前
吴悠发布了新的文献求助10
1秒前
1秒前
坦率岱周发布了新的文献求助10
1秒前
寒冷忆山发布了新的文献求助10
1秒前
hhhhhhh完成签到,获得积分10
1秒前
可爱的函函应助坦率灵槐采纳,获得10
2秒前
2秒前
2秒前
YYY完成签到,获得积分10
2秒前
2秒前
2秒前
心静如水发布了新的文献求助10
3秒前
敢问阁下是何人完成签到,获得积分10
3秒前
MDsi完成签到,获得积分10
3秒前
zxm完成签到,获得积分10
4秒前
4秒前
脑洞疼应助guyuangyy采纳,获得10
4秒前
叶子完成签到,获得积分10
4秒前
5秒前
华仔应助aiyoualxb采纳,获得10
5秒前
5秒前
SciGPT应助huangsj采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
窝窝头发布了新的文献求助10
8秒前
浮游应助nkmenghan采纳,获得10
8秒前
8秒前
9秒前
9秒前
wa完成签到 ,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340805
求助须知:如何正确求助?哪些是违规求助? 4477142
关于积分的说明 13934136
捐赠科研通 4373054
什么是DOI,文献DOI怎么找? 2402823
邀请新用户注册赠送积分活动 1395606
关于科研通互助平台的介绍 1367696