FPGA-based design and implementation of the location attention mechanism in neural networks

计算机科学 现场可编程门阵列 正确性 管道(软件) 并行计算 人工神经网络 加速 循环展开 卷积神经网络 嵌入式系统 算法 人工智能 编译程序 程序设计语言
作者
Ruixiu Qiao,Xiaozhou Guo,Wenyu Mao,Jixing Li,Huaxiang Lu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (4): 5309-5323
标识
DOI:10.3233/jifs-212273
摘要

The location attention mechanism has been widely applied in deep neural networks. However, as the mechanism entails heavy computing workload, significant memories consumed for weights storage, and shows poor parallelism in some calculations, it is hard to achieve high efficiency deployment. In this paper, the field-programmable gate array (FPGA) is employed to implement the location attention mechanism in hardware, and a novel fusion approach is proposed to connect the convolutional layer with the fully connected layer, which not only improves the parallelism of both the algorithm and the hardware pipeline, but also reduces the computation cost for such operations as multiplication and addition. Meanwhile, the shared computing architecture is used to reduce the demand for hardware resources. Parallel computing arrays are utilized to time-multiplex a single computing array, which can speed up the pipeline parallel computing of the attention mechanism. Experimental results show that for the location attention mechanism, the FPGA’s inference speed is 0.010 ms, which is around a quarter of the speed achieved by running it with GPU, and its power consumption is 1.73 W, which is about 2.89% of the power consumed by running it with CPU. Compared with other FPGA implementation methods of attention mechanism, it has less hardware resource consumption and less inference time. When applied to speech recognition tasks, the trained attention model is symmetrically quantized and deployed on the FPGA. The result shows that the word error rate is only 0.79% higher than that before quantization, which proves the effectiveness and correctness of the hardware circuit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的盼柳应助ikea1984采纳,获得10
刚刚
hailiangzheng发布了新的文献求助10
1秒前
Ruoru完成签到,获得积分10
1秒前
孙凤敏完成签到,获得积分20
1秒前
打打应助完美的从蓉采纳,获得10
1秒前
飞龙在天发布了新的文献求助10
1秒前
需要帮助的小白菜完成签到 ,获得积分10
2秒前
烛夜黎发布了新的文献求助10
2秒前
2秒前
我爱科研发布了新的文献求助20
2秒前
小郭完成签到,获得积分10
3秒前
Ruoru发布了新的文献求助10
3秒前
酷波er应助单纯的访冬采纳,获得10
4秒前
虚拟龙猫发布了新的文献求助10
4秒前
晶晶发布了新的文献求助10
4秒前
5秒前
6秒前
智博36发布了新的文献求助10
6秒前
6秒前
longxxxb发布了新的文献求助10
8秒前
sweet发布了新的文献求助10
10秒前
无名完成签到,获得积分10
10秒前
10秒前
不如一默发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
ceeray23发布了新的文献求助20
14秒前
无花果应助破晓之照采纳,获得10
15秒前
pK发布了新的文献求助10
16秒前
16秒前
17秒前
林布林发布了新的文献求助10
17秒前
跨进行发布了新的文献求助10
19秒前
21秒前
落后的涵柳完成签到 ,获得积分10
21秒前
22秒前
怕黑荠应助czx采纳,获得30
22秒前
华东少年发布了新的文献求助10
22秒前
阿辉发布了新的文献求助200
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561075
求助须知:如何正确求助?哪些是违规求助? 3134842
关于积分的说明 9409879
捐赠科研通 2835055
什么是DOI,文献DOI怎么找? 1558395
邀请新用户注册赠送积分活动 728129
科研通“疑难数据库(出版商)”最低求助积分说明 716696