Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles

分子印迹聚合物 纳米技术 纳米颗粒 分子识别 计算机科学 分子印迹 材料科学 聚合物 生化工程 化学 选择性 分子 有机化学 工程类 复合材料 催化作用
作者
Daniel Mukunzi,Jean de Dieu Habimana,Zhiyuan Li,Xiaobo Zhang
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:63 (23): 6034-6068 被引量:6
标识
DOI:10.1080/10408398.2022.2027338
摘要

Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
森林林林完成签到 ,获得积分10
4秒前
刻苦耳机发布了新的文献求助10
6秒前
6秒前
7秒前
林思完成签到,获得积分10
8秒前
杨文成完成签到,获得积分10
8秒前
靓靓鱼发布了新的文献求助10
10秒前
10秒前
11秒前
blueblue不熬夜完成签到,获得积分10
11秒前
11111完成签到 ,获得积分10
11秒前
12秒前
pentjy完成签到,获得积分10
12秒前
lemonlmm应助athena采纳,获得30
12秒前
Ava应助Ying瀅采纳,获得10
13秒前
搞怪的大侠完成签到,获得积分10
13秒前
CipherSage应助JXY采纳,获得10
14秒前
顾矜应助靓靓鱼采纳,获得10
15秒前
刻苦耳机完成签到,获得积分10
15秒前
FLY完成签到,获得积分10
15秒前
zhang20082418发布了新的文献求助10
16秒前
大大骁晓发布了新的文献求助20
16秒前
17秒前
17秒前
ranran完成签到,获得积分20
17秒前
蛋宝完成签到,获得积分10
18秒前
迹K发布了新的文献求助10
18秒前
20秒前
苦哈哈发布了新的文献求助10
20秒前
井盖猪头笨蛋完成签到,获得积分10
21秒前
RTena.完成签到,获得积分10
21秒前
ranran发布了新的文献求助10
22秒前
小二郎应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
24秒前
24秒前
所所应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135254
求助须知:如何正确求助?哪些是违规求助? 2786259
关于积分的说明 7776312
捐赠科研通 2442153
什么是DOI,文献DOI怎么找? 1298474
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847