Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy

材料科学 残余应力 钛合金 合金 严重塑性变形 微观结构 冶金 变形(气象学) 加工硬化 疲劳极限 可塑性 应变硬化指数 变形带 复合材料
作者
Ni Ao,Daoxin Liu,Xiao-Hua Zhang,Jiwang Zhang,Philip J. Withers
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:158: 106732-106732 被引量:4
标识
DOI:10.1016/j.ijfatigue.2022.106732
摘要

• Surface rolling deformed severity-dependent fatigue mechanism of titanium alloy was revealed. • The microstructural evolutions of the samples with different surface rolling deformation severities during fatigue loading were revealed. • The residual stress evolutions during fatigue loading for the different surface rolling deformed samples were clarified. • A surface strengthening strategy was given to enhance the stress-controlled fatigue property of titanium alloy. This work investigates the effect of initial surface plastic deformation on the fatigue behavior of Ti-6Al-4V alloy based on the microstructure and residual stress evolution under fatigue loading. The high strain hardening ability, full play of compressive residual stress, and excellent surface integrity of samples with low plastic deformation severity resulted in relatively higher fatigue strength. Microstructural analysis revealed that the ultrasonic surface rolling process (USRP) applied to samples with low plastic deformation severity accommodated plastic strain by refining the grains, whereas the grains coarsened in the USRP samples with high plastic deformation severity for accommodating the plastic strain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
3秒前
我是站长才怪应助xg采纳,获得10
3秒前
decimalpoint完成签到 ,获得积分10
5秒前
Benliu发布了新的文献求助20
5秒前
5秒前
Carol完成签到,获得积分10
5秒前
sw98318发布了新的文献求助10
6秒前
wang1090完成签到,获得积分10
6秒前
奋斗的许婷2完成签到,获得积分10
6秒前
6秒前
7秒前
hll完成签到,获得积分20
7秒前
阳yang发布了新的文献求助10
7秒前
8秒前
wang1090发布了新的文献求助30
9秒前
呜呜呜呜完成签到,获得积分10
9秒前
9秒前
Riki发布了新的文献求助10
10秒前
88发布了新的文献求助10
10秒前
11秒前
充电宝应助zfy采纳,获得10
12秒前
sak完成签到,获得积分10
13秒前
Shuo Yang发布了新的文献求助20
13秒前
呜呜呜呜发布了新的文献求助10
13秒前
在水一方应助hhzz采纳,获得10
13秒前
旧是完成签到 ,获得积分10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
杨小胖完成签到 ,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
mm发布了新的文献求助10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
shouyu29应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808