Predicting post‐stroke motor recovery of upper extremity using clinical variables and performance assays: A prospective cohort study protocol

物理医学与康复 冲程(发动机) 康复 物理疗法 前瞻性队列研究 医学 队列 外科 机械工程 内科学 工程类
作者
Sanjukta Sardesai,John Solomon M,Ashokan Arumugam,Vasudeva Guddattu,Sankar Prasad Gorthi,Aparna Pai,Senthil Kumaran D
出处
期刊:Physiotherapy Research International [Wiley]
卷期号:27 (2) 被引量:3
标识
DOI:10.1002/pri.1937
摘要

Measurement of movement quality is essential to distinguish motor recovery patterns and optimize rehabilitation strategies post-stroke. Recently, the Stroke Recovery and Rehabilitation Roundtable Taskforce (SRRR) recommended four kinetic and kinematic performance assays to measure upper extremity (UE) movements and distinguish behavioral restitution and compensation mechanisms early post-stroke. The purpose of this study is to develop and validate a prediction model to analyze the added prognostic value of performance assays over clinical variables assessed up to 1-month post stroke for predicting recovery of UE motor impairment, capacity and quality of movement (QoM) measured at 3 months post-stroke onset.In this prospective cohort study, 120 stroke survivors will be recruited within seven days post-stroke. Candidate predictors such as baseline characteristics, demographics and performance assays as per SRRR recommendations along with tonic stretch reflex threshold will be measured up to 1-month post-stroke. Upper extremity motor recovery will be evaluated in terms of motor impairment (Fugl-Meyer assessment for UE), UE capacity measured with Action Research Arm Test (ARAT) and QoM (movement smoothness in the form of peak metrics [PM]) assessed with a reach-to-grasp-to-mouth task (mimicking a drinking task) at 3 months post-stroke. Three multivariable linear regression models will be developed to predict factors responsible for the outcomes of Fugl-Meyer assessment for upper extremity (FM-UE), ARAT and movement quality. The developed models will be internally validated using a split-sample method.This study will provide a validated prediction model inclusive of clinical and performance assays that may assist in prediction of UE motor recovery. Predicting the amount of recovery and differentiating between behavioral restitution and compensation (as reflected by the FM-UE, QoM and ARAT) would enable us in realistic goal formation and planning rehabilitation. It would also help in encouraging patients to partake in early post-stroke rehabilitation thus improving the recovery potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pangboo发布了新的文献求助20
1秒前
2秒前
2秒前
Hcr发布了新的文献求助30
3秒前
李爱国应助年轻的夕阳采纳,获得10
4秒前
5秒前
我是屈原在世完成签到,获得积分10
5秒前
6秒前
6秒前
南橘完成签到,获得积分10
6秒前
笨笨发布了新的文献求助10
6秒前
脑洞疼应助超级煎饼采纳,获得10
6秒前
魔幻灵竹发布了新的文献求助50
6秒前
7秒前
小马甲应助甜甜亦丝采纳,获得10
7秒前
科研通AI5应助小郭采纳,获得10
8秒前
9秒前
tao发布了新的文献求助10
10秒前
刘建伟发布了新的文献求助10
10秒前
Orange应助谨慎的雨梅采纳,获得10
10秒前
11秒前
11秒前
WJ完成签到,获得积分10
11秒前
成就的艳一应助zz采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
可爱的函函应助浪里白条采纳,获得10
12秒前
12秒前
Jasper应助chechang采纳,获得10
12秒前
am完成签到,获得积分10
13秒前
13秒前
13秒前
笨笨完成签到,获得积分10
13秒前
研友_nEWaD8发布了新的文献求助10
14秒前
亲情之友发布了新的文献求助10
15秒前
一一完成签到,获得积分20
15秒前
李爱国应助Camellia采纳,获得10
17秒前
科研通AI5应助shmily采纳,获得10
17秒前
18秒前
科研通AI6应助Hcr采纳,获得10
19秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983