Effect of cobalt phosphide (CoP) vacancies on its hydrogen evolution activity via water splitting: a theoretical study

空位缺陷 密度泛函理论 磷化物 离解(化学) 吸附 材料科学 化学物理 催化作用 分解水 氢原子 Atom(片上系统) 化学 纳米技术 物理化学 结晶学 计算化学 无机化学 有机化学 嵌入式系统 光催化 计算机科学 烷基
作者
Xiaofei Cao,Yuan Tan,Huaan Zheng,Jun Hu,Xi Chen,Zhong Chen
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (7): 4644-4652 被引量:28
标识
DOI:10.1039/d1cp05739a
摘要

Defect engineering plays an important role in improving the performance of catalysts. To clarify the roles of Co and P vacancies in CoP for water splitting, a theoretical study based on density functional theory was carried out in this paper. The geometric and electronic structures, activity and stability of the CoP (101)B surface, CoP (101)B with the Co vacancy (Covac) and the P vacancy (Pvac) are investigated. The results indicate that the CoP (101)B surface with Pvac and Covac can enhance the electron transfer to the surface. The Pvac will upward shift the Co d-band center near the vacancy site, which promotes the adsorption of H on the Co atom. As a result, the bridge Co-Co sites near the vacancy become the active sites for the hydrogen evolution reaction (HER) (ΔGH* = 0.01 eV). The loss of the Co atom also results in an upward shift of its d-band center, which will enhance the H adsorption on the adjacent Co sites. The unevenly distributed electrons due to the presence of vacancies on the surface cause spontaneous dissociation of H2O molecules. Furthermore, the thermodynamic analysis and surface energy find that the CoP (101)B and (101)B facets with Covac and Pvac present good stability. The current work has shed light onto the mechanism of water splitting on the surface of phosphide with vacancies. Our study suggests that engineering vacancies on CoP is a feasible route to improve its catalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
yin完成签到,获得积分10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
36456657应助CC采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李健应助WTT采纳,获得10
3秒前
3秒前
3秒前
LT完成签到,获得积分10
3秒前
含蓄灵薇完成签到 ,获得积分10
3秒前
zhengzehong完成签到,获得积分10
4秒前
4秒前
稻草人完成签到 ,获得积分10
6秒前
zho发布了新的文献求助30
7秒前
7秒前
cc只会嘻嘻完成签到 ,获得积分10
7秒前
zink驳回了ding应助
7秒前
习习发布了新的文献求助10
7秒前
经法发布了新的文献求助10
8秒前
8秒前
8秒前
tong完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678