已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Short Survey on Forest Based Heterogeneous Treatment Effect Estimation Methods: Meta-learners and Specific Models

计算机科学 推论 因果推理 机器学习 随机森林 元学习(计算机科学) 人工智能 估计 任务(项目管理) 因果关系 数据科学 透视图(图形) 数据挖掘 计量经济学 数学 经济 管理 法学 政治学
作者
Hao Jiang,Peng Qi,Jingying Zhou,Jack G. Zhou,Sharath Rao
标识
DOI:10.1109/bigdata52589.2021.9671439
摘要

Causation is gradually paid more attention to in industry as compared with correlation statement, it straightly targets on answering what-if questions, which generally delivers deeper and more insightful conclusions. Therefore, causal inference is naturally called. Mainly targeting on modeling counter-factual relationship that is usually not directly observable, causal inference has various of challenges on both problem setup and modeling side, which makes it a more complex topic than regular supervised learning task. As one of the heated discussed specific causal inference problems, conditional average treatment effect (CATE), or heterogeneous treatment effect (HTE), estimation model serves as a powerful tool in many applications, like personalized medicine and a series of uplift problems from user segmentation to ads budget optimization. Recently, several new CATE methods were proposed and we would like to do a short survey from the perspective of forest-based model to cover both meta-learners that could take random forest as base learner and forest-based specific CATE models. In total, we discussed 7 meta-learners and 5 forest-based specific models. We empirically evaluate these models with both synthetic data and real dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
yx_cheng应助依依采纳,获得10
7秒前
7秒前
7秒前
surge发布了新的文献求助10
8秒前
bkagyin应助冷眸采纳,获得10
8秒前
留胡子的昊强完成签到,获得积分10
9秒前
9秒前
AronHUANG发布了新的文献求助30
11秒前
Strayer关注了科研通微信公众号
12秒前
surge完成签到,获得积分10
13秒前
北风发布了新的文献求助10
15秒前
学必困完成签到 ,获得积分10
16秒前
newbiology完成签到 ,获得积分10
17秒前
无私代芹完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
momo发布了新的文献求助10
22秒前
22秒前
于东发布了新的文献求助10
25秒前
Ava应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
26秒前
Shamray应助锦诚明采纳,获得60
28秒前
北风完成签到,获得积分10
29秒前
KDS发布了新的文献求助10
32秒前
33秒前
34秒前
34秒前
38秒前
jasmine发布了新的文献求助10
39秒前
冷眸发布了新的文献求助10
39秒前
明明完成签到 ,获得积分10
42秒前
领导范儿应助小巧谷波采纳,获得10
43秒前
戴哈哈发布了新的文献求助10
43秒前
bryceeluo完成签到,获得积分10
46秒前
Wang发布了新的文献求助10
49秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502932
关于积分的说明 11110720
捐赠科研通 3233931
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802209