Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助zhang采纳,获得10
刚刚
杨胜菲完成签到,获得积分10
刚刚
汉堡包应助高高断秋采纳,获得10
刚刚
sdsff完成签到,获得积分10
刚刚
nihao发布了新的文献求助10
刚刚
杨阳发布了新的文献求助10
刚刚
387发布了新的文献求助30
1秒前
1秒前
zheya完成签到,获得积分10
1秒前
jjn应助机灵水卉采纳,获得10
1秒前
2秒前
LUCKY完成签到,获得积分10
3秒前
深情安青应助负责的香魔采纳,获得10
3秒前
小二郎应助Wenroy采纳,获得10
3秒前
莓莓发布了新的文献求助20
4秒前
ty完成签到,获得积分10
4秒前
ly完成签到,获得积分10
4秒前
5秒前
shiizii应助Aa采纳,获得10
5秒前
dd99081完成签到,获得积分10
5秒前
xiangling1116完成签到,获得积分10
5秒前
淡然的衣完成签到 ,获得积分10
5秒前
5秒前
ALEXAA发布了新的文献求助40
6秒前
6秒前
6秒前
思源应助顾文采纳,获得10
6秒前
坚强的翠霜完成签到 ,获得积分10
6秒前
亲亲布加拉提完成签到,获得积分10
7秒前
酷波er应助13344采纳,获得10
7秒前
7秒前
JUAN发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分10
8秒前
关包子完成签到,获得积分10
8秒前
ly发布了新的文献求助10
8秒前
9秒前
Lynette发布了新的文献求助10
9秒前
万能图书馆应助lxy采纳,获得10
9秒前
dsds完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670