Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengwanru完成签到,获得积分10
刚刚
意寒完成签到,获得积分10
1秒前
吴先生完成签到,获得积分10
1秒前
种花兔完成签到,获得积分10
1秒前
打打应助田攀采纳,获得10
1秒前
1秒前
华仔应助lyy采纳,获得10
1秒前
2秒前
拘留所完成签到,获得积分10
2秒前
amanda举报Dxy-TOFA求助涉嫌违规
3秒前
旦皋发布了新的文献求助50
3秒前
马tttt完成签到,获得积分10
3秒前
七面东风完成签到,获得积分10
3秒前
纯情的采柳完成签到 ,获得积分10
3秒前
小马甲应助肆_采纳,获得10
3秒前
科研汪完成签到,获得积分10
3秒前
温暖妙彤完成签到 ,获得积分10
3秒前
4秒前
zuoyueyue应助jianyulv采纳,获得50
4秒前
冉冉完成签到 ,获得积分0
4秒前
JudasW完成签到,获得积分10
4秒前
迷人的鲂完成签到,获得积分10
4秒前
4秒前
遥远星辰完成签到,获得积分10
4秒前
宇文书翠发布了新的文献求助10
5秒前
由由完成签到,获得积分20
5秒前
Vicki完成签到,获得积分0
5秒前
lll发布了新的文献求助10
5秒前
16发布了新的文献求助10
5秒前
宋真玉完成签到 ,获得积分10
5秒前
wanglejia完成签到,获得积分10
5秒前
喵喵完成签到,获得积分10
7秒前
Tara完成签到 ,获得积分10
7秒前
科研通AI6应助高帮白袜采纳,获得10
7秒前
Lucas应助ctttt采纳,获得10
8秒前
药学小团子完成签到,获得积分10
8秒前
蜘蛛道理完成签到 ,获得积分10
8秒前
打打应助tejing1158采纳,获得10
8秒前
冰泪紫沫完成签到,获得积分20
8秒前
h'c'z完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284