Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助循环采纳,获得10
1秒前
1秒前
辛勤的觅荷完成签到,获得积分10
1秒前
研友_Z3vN0n完成签到,获得积分10
1秒前
ww发布了新的文献求助20
2秒前
闪闪的诗珊应助BJYX采纳,获得10
2秒前
2秒前
2秒前
牛牛牛应助Kunhui采纳,获得30
3秒前
自由天川完成签到,获得积分10
3秒前
lin发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
Neo完成签到,获得积分20
3秒前
LL发布了新的文献求助10
3秒前
4秒前
满意的梦完成签到,获得积分10
4秒前
平常映雁完成签到,获得积分10
5秒前
听谛9发布了新的文献求助10
5秒前
andy完成签到,获得积分10
5秒前
搜集达人应助高贵振家采纳,获得10
6秒前
风清扬完成签到,获得积分10
6秒前
小飞完成签到,获得积分10
6秒前
7秒前
甜甜花卷发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
zhanggq123发布了新的文献求助10
8秒前
上官若男应助lilili采纳,获得10
9秒前
jananie完成签到,获得积分10
10秒前
彪壮的忘幽完成签到,获得积分10
10秒前
11秒前
英俊的铭应助无语的弱采纳,获得10
12秒前
调皮的酬海应助6666666666采纳,获得20
12秒前
顾矜应助forangel采纳,获得10
12秒前
13秒前
栖遇完成签到 ,获得积分10
13秒前
甜甜花卷完成签到,获得积分10
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933