Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姬因发布了新的文献求助10
刚刚
刚刚
FashionBoy应助大炮轰地球采纳,获得10
刚刚
兴奋莞发布了新的文献求助10
1秒前
2秒前
2秒前
wanci应助典雅猕猴桃采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
傲娇皮皮虾完成签到 ,获得积分10
3秒前
科目三应助阿苇采纳,获得10
4秒前
深情安青应助王蕊采纳,获得10
5秒前
5秒前
6秒前
愉快寄凡发布了新的文献求助10
6秒前
6秒前
7秒前
Lucas应助原野小年采纳,获得10
7秒前
crystal发布了新的文献求助10
7秒前
mmol完成签到,获得积分10
7秒前
Xian发布了新的文献求助10
7秒前
wanci应助冰冰采纳,获得10
7秒前
kai发布了新的文献求助10
8秒前
8秒前
暖若安阳发布了新的文献求助10
8秒前
毛毛完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
年鱼精发布了新的文献求助10
9秒前
9秒前
花花完成签到,获得积分10
9秒前
清爽觅双完成签到,获得积分10
9秒前
9秒前
Daniel911完成签到,获得积分10
9秒前
FashionBoy应助韩麒嘉采纳,获得10
9秒前
叮当喵发布了新的文献求助10
10秒前
10秒前
合适鲂完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844