Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
Lynn完成签到,获得积分20
3秒前
研友_LJpYdZ完成签到,获得积分10
3秒前
3秒前
标致绮露发布了新的文献求助10
4秒前
5秒前
5秒前
猪猪侠发布了新的文献求助30
5秒前
唾沫星子发布了新的文献求助10
5秒前
孟一完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
少年游发布了新的文献求助10
12秒前
zhouqiuqiu完成签到,获得积分10
12秒前
13秒前
13秒前
梁超发布了新的文献求助10
14秒前
14秒前
八佰应助唾沫星子采纳,获得10
14秒前
huohuo143完成签到,获得积分10
15秒前
田様应助芹菜自愿内卷采纳,获得10
15秒前
一风一叶发布了新的文献求助10
15秒前
16秒前
16秒前
殴打阿达完成签到,获得积分20
18秒前
天涯倦客完成签到,获得积分10
18秒前
19秒前
周芷卉发布了新的文献求助10
19秒前
脑洞疼应助少年游采纳,获得10
20秒前
cc发布了新的文献求助10
21秒前
香蕉觅云应助高大冷菱采纳,获得10
22秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340086
求助须知:如何正确求助?哪些是违规求助? 2968135
关于积分的说明 8632438
捐赠科研通 2647668
什么是DOI,文献DOI怎么找? 1449744
科研通“疑难数据库(出版商)”最低求助积分说明 671534
邀请新用户注册赠送积分活动 660503