Joint Communication and Computation Resource Allocation in Fog-Based Vehicular Networks

计算机科学 斯塔克伯格竞赛 计算卸载 服务器 云计算 资源配置 延迟(音频) 预订 分布式计算 计算机网络 移动边缘计算 边缘计算 计算 边缘设备 GSM演进的增强数据速率 算法 操作系统 人工智能 电信 数学 数理经济学
作者
Xinran Zhang,Mugen Peng,Shi Yan,Yaohua Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13195-13208 被引量:12
标识
DOI:10.1109/jiot.2022.3140811
摘要

To satisfy the low-latency requirements of emerging computation-intensive vehicular services, offloading these services to edge or cloud servers has been recognized as an effective solution. Due to the limited resources of edge servers and the faraway distance of cloud servers, it is challenging to provide an efficient resource allocation strategy to balance the latency, throughput and the resource utilization. In this paper, an end–edge–cloud collaboration paradigm is presented for computation offloading in fog-based vehicular networks (FVNETs) by incorporating vehicles with idle resources as fog user equipments (F-UEs). To adaptively orchestrate end–edge–cloud resources in different load cases, a two-timescale resource reservation and allocation framework is proposed. Wherein, a Stackelberg-game-based dynamic F-UE incentive problem is first formulated with the cloud server as the leader and multiple F-UEs as the followers, and then an iterative algorithm is proposed to achieve the Stackelberg equilibrium of the computation resource pricing and reservation. On a small timescale, the joint communication and computation resource allocation problem is transferred into a multiagent stochastic game and a lenient multiagent deep-reinforcement-learning-based distributed algorithm is developed to minimize the sum latency. When latency performance deteriorates, F-UE incentive optimization will be triggered to reserve more resources of F-UEs. Simulation results show that the proposed end–edge–cloud orchestrated computation offloading scheme in FVNETs outperforms baselines in terms of average latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玻尿酸完成签到,获得积分10
1秒前
lara完成签到,获得积分10
2秒前
2秒前
XLL小绿绿发布了新的文献求助10
2秒前
2秒前
rita完成签到,获得积分10
3秒前
李健的小迷弟应助神明采纳,获得10
3秒前
qian完成签到,获得积分10
3秒前
4秒前
归尘应助qin采纳,获得10
4秒前
谯殿艺完成签到,获得积分10
5秒前
动听帆布鞋完成签到,获得积分10
5秒前
罗霄山完成签到,获得积分10
6秒前
科研通AI2S应助杨pangpang采纳,获得10
6秒前
3636发布了新的文献求助10
7秒前
愤怒的豌豆完成签到,获得积分10
7秒前
起名完成签到,获得积分10
7秒前
咖飞发布了新的文献求助10
8秒前
Lemonzhao发布了新的文献求助10
9秒前
mm关闭了mm文献求助
9秒前
Fuffu发布了新的文献求助10
9秒前
充电宝应助liuzengzhang666采纳,获得10
10秒前
10秒前
susu完成签到,获得积分10
10秒前
CipherSage应助suchashing采纳,获得30
10秒前
SciGPT应助yunai采纳,获得10
11秒前
危机的雍完成签到 ,获得积分10
11秒前
11秒前
CipherSage应助任小九采纳,获得20
11秒前
yao学渣完成签到 ,获得积分10
11秒前
wangtongxue完成签到 ,获得积分10
11秒前
11秒前
xiaohua完成签到,获得积分10
11秒前
12秒前
兴奋不二完成签到,获得积分10
12秒前
科研冰山发布了新的文献求助10
13秒前
lara发布了新的文献求助10
13秒前
云微颖完成签到,获得积分10
13秒前
Owen应助芹菜煎蛋采纳,获得10
14秒前
深情安青应助夏侯无色采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128