ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images

轮廓 分割 掷骰子 计算机科学 人工智能 Sørensen–骰子系数 预处理器 深度学习 模式识别(心理学) 图像分割 数学 统计 计算机图形学(图像)
作者
Seenia Francis,P. B. Jayaraj,P. N. Pournami,Manu Mathew Thomas,Ajay Thoomkuzhy Jose,Allen John Binu,Niyas Puzhakkal
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:45 (1): 189-203 被引量:12
标识
DOI:10.1007/s13246-022-01101-x
摘要

An important phase of radiation treatment planning is the accurate contouring of the organs at risk (OAR), which is necessary for the dose distribution calculation. The manual contouring approach currently used in clinical practice is tedious, time-consuming, and prone to inter and intra-observer variation. Therefore, a deep learning-based auto contouring tool can solve these issues by accurately delineating OARs on the computed tomography (CT) images. This paper proposes a two-stage deep learning-based segmentation model with an attention mechanism that automatically delineates OARs in thoracic CT images. After preprocessing the input CT volume, a 3D U-Net architecture will locate each organ to generate cropped images for the segmentation network. Next, two differently configured U-Net-based networks will perform the segmentation of large organs-left lung, right lung, heart, and small organs-esophagus and spinal cord, respectively. A post-processing step integrates all the individually-segmented organs to generate the final result. The suggested model outperformed the state-of-the-art approaches in terms of dice similarity coefficient (DSC) values for the lungs and the heart. It is worth mentioning that the proposed model achieved a dice score of 0.941, which is 1.1% higher than the best previous dice score, in the case of the heart, an important organ in the human body. Moreover, the clinical acceptance of the results is verified using dosimetric analysis. To delineate all five organs on a CT scan of size [Formula: see text], our model takes only 8.61 s. The proposed open-source automatic contouring tool can generate accurate contours in minimal time, consequently speeding up the treatment time and reducing the treatment cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
湘君完成签到,获得积分10
2秒前
科研通AI2S应助吴彦祖采纳,获得10
2秒前
小飞机发布了新的文献求助10
2秒前
落后觅波发布了新的文献求助10
2秒前
桐桐应助爱笑宛亦采纳,获得10
4秒前
无花果应助临风采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
元谷雪应助科研通管家采纳,获得10
6秒前
maox1aoxin应助科研通管家采纳,获得20
6秒前
7秒前
8秒前
8秒前
阳光的安南完成签到,获得积分10
9秒前
做不出来发布了新的文献求助10
11秒前
科研通AI2S应助YA采纳,获得10
12秒前
NexusExplorer应助能干太清采纳,获得10
12秒前
忧郁小刺猬完成签到,获得积分10
12秒前
14秒前
14秒前
16秒前
平常之槐完成签到,获得积分20
16秒前
田様应助BSDL采纳,获得10
17秒前
17秒前
郭禹霄发布了新的文献求助10
17秒前
思源应助bc采纳,获得10
18秒前
18秒前
20秒前
今后应助BaekHyun采纳,获得10
20秒前
完美的芙蓉完成签到 ,获得积分10
22秒前
白白发布了新的文献求助10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259778
求助须知:如何正确求助?哪些是违规求助? 2901272
关于积分的说明 8314891
捐赠科研通 2570789
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853