Robust MDSDO for Co-Design of Stochastic Dynamic Systems

数学优化 多学科设计优化 稳健优化 随机优化 计算机科学 优化设计 随机规划 最优化问题 多样性(控制论)
作者
Saeed Azad,Michael J. Alexander-Ramos
出处
期刊:Journal of Mechanical Design 卷期号:142 (1)
标识
DOI:10.1115/1.4044430
摘要

Abstract Optimization of dynamic engineering systems generally requires problem formulations that account for the coupling between embodiment design and control system design simultaneously. Such formulations are commonly known as combined optimal design and control (co-design) problems, and their application to deterministic systems is well established in the literature through a variety of methods. However, an issue that has not been addressed in the co-design literature is the impact of the inherent uncertainties within a dynamic system on its integrated design solution. Accounting for these uncertainties transforms the standard, deterministic co-design problem into a stochastic one, thus requiring appropriate stochastic optimization approaches for its solution. This paper serves as the starting point for research on stochastic co-design problems by proposing and solving a novel problem formulation based on robust design optimization (RDO) principles. Specifically, a co-design method known as multidisciplinary dynamic system design optimization (MDSDO) is used as the basis for an RDO problem formulation and implementation. The robust objective and inequality constraints are computed per usual as functions of their first-order-approximated means and variances, whereas analysis-based equality constraints are evaluated deterministically at the means of the random decision variables. The proposed stochastic co-design problem formulation is then implemented for two case studies, with the results indicating the importance of the robust approach on the integrated design solutions and performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DQY完成签到,获得积分10
刚刚
BONBON完成签到,获得积分20
刚刚
动听导师发布了新的文献求助10
1秒前
1秒前
季忆完成签到,获得积分10
1秒前
小周发布了新的文献求助10
2秒前
smile发布了新的文献求助10
2秒前
3秒前
Lore完成签到 ,获得积分10
3秒前
3秒前
jiang完成签到,获得积分10
4秒前
4秒前
无奈的酒窝关注了科研通微信公众号
5秒前
毛毛完成签到,获得积分10
5秒前
正在完成签到,获得积分10
6秒前
6秒前
充电宝应助JR采纳,获得10
7秒前
7秒前
cc完成签到,获得积分20
7秒前
李爱国应助111采纳,获得10
7秒前
jy发布了新的文献求助10
7秒前
好好完成签到 ,获得积分10
8秒前
阿希塔完成签到,获得积分10
8秒前
JamesPei应助看看采纳,获得10
8秒前
10秒前
10秒前
卢健辉发布了新的文献求助10
10秒前
11秒前
cookie完成签到,获得积分10
11秒前
JMZ完成签到 ,获得积分10
13秒前
英姑应助星星采纳,获得10
13秒前
spurs17发布了新的文献求助30
14秒前
LH完成签到,获得积分10
14秒前
CodeCraft应助Island采纳,获得10
15秒前
annis完成签到,获得积分10
15秒前
小黄应助asir_xw采纳,获得10
16秒前
认真的rain完成签到,获得积分10
16秒前
糊涂的小伙完成签到,获得积分10
17秒前
芒果豆豆完成签到,获得积分10
17秒前
赎罪完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808