Fatigue-Sensitivity Comparison of sEMG and A-Mode Ultrasound based Hand Gesture Recognition

马氏距离 线性判别分析 肌肉疲劳 计算机科学 人工智能 肌电图 模式识别(心理学) 稳健性(进化) 语音识别 特征提取 信号(编程语言) 医学 物理医学与康复 基因 化学 程序设计语言 生物化学
作者
Jia Zeng,Yu Zhou,Yicheng Yang,Jipeng Yan,Yinfeng Fang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 1718-1725 被引量:24
标识
DOI:10.1109/jbhi.2021.3122277
摘要

Though physiological signal based human-machine interfaces (HMIs) have recently developed rapidly, their practical use is restricted by many real-world environmental factors, one of which is muscle fatigue. This paper explores the sensitivities between surface electromyography (sEMG) and A-mode ultrasound (AUS) sensing modalities subject to muscle fatigue in the context of hand gesture recognition tasks. Two metrics, mean classification accuracy ( mCA) and decline rate ( DR), are proposed to evaluate the accuracy and muscle fatigue sensitivity between sEMG and AUS based HMIs. Muscle fatigue inducing experiment was designed and eight subjects were recruited to participate in the experiment. The gesture recognition accuracies of sEMG and AUS under non-fatigue state and fatigue state are compared through Mahalanobis distance based classifier linear discriminant analysis (LDA). In addition, Mahalanobis distance based metrics, repeatability index ( RI) and separability index ( SI), are introduced to evaluate the changes in the feature distribution during muscle fatigue and reveal the cause of the fatigue sensitivity difference between sEMG and AUS signals. The experimental results demonstrate that the fatigue robustness of AUS signal is better than that of sEMG signal. Specifically, with the employment of the LDA classifier trained under non-fatigue state, the testing accuracy of the sEMG signal on the non-fatigue state is 94.96%, while reduce to 68.26% on the fatigue state. The testing accuracy of the AUS signal on the corresponding states is 99.68% and 91.24% respectively. AUS signal attains higher mCA and lower DR, indicating that it has advantages over sEMG signal in terms of both accuracy and muscle fatigue sensitivity. In addition, the RI and RI/SI analysis reveal that before and after muscle fatigue, the consistency of AUS feature distribution is better than that of sEMG. These research outcomes validate that AUS is more tolerant to feature migration caused by muscle fatigue than sEMG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SaSa完成签到,获得积分10
刚刚
瘦瘦麦片发布了新的文献求助10
刚刚
honghuxian发布了新的文献求助10
刚刚
1秒前
xia完成签到,获得积分10
1秒前
2秒前
2秒前
小蘑菇应助给大佬递茶采纳,获得10
2秒前
宇哈哈发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
xie完成签到 ,获得积分10
4秒前
小二郎应助郗栗采纳,获得10
4秒前
Lily完成签到,获得积分10
4秒前
4秒前
4秒前
希望天下0贩的0应助陈帅采纳,获得10
5秒前
5秒前
稳重的胡萝卜完成签到,获得积分10
5秒前
CodeCraft应助张起灵采纳,获得10
6秒前
7秒前
小耗子发布了新的文献求助10
7秒前
我是老大应助嬛嬛采纳,获得10
7秒前
7秒前
8秒前
9秒前
Owen应助微风采纳,获得10
9秒前
10秒前
陈金芳完成签到,获得积分10
10秒前
傲娇如天发布了新的文献求助10
10秒前
12秒前
12秒前
跳跃的翼发布了新的文献求助10
13秒前
Ava应助可乐采纳,获得10
13秒前
一一完成签到,获得积分10
13秒前
13秒前
宇哈哈完成签到,获得积分20
14秒前
14秒前
最蠢的讨厌鬼完成签到,获得积分10
14秒前
清秀冰珍发布了新的文献求助10
15秒前
稳重元冬完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207