Fatigue-Sensitivity Comparison of sEMG and A-Mode Ultrasound based Hand Gesture Recognition

马氏距离 线性判别分析 肌肉疲劳 计算机科学 人工智能 肌电图 模式识别(心理学) 稳健性(进化) 语音识别 特征提取 信号(编程语言) 医学 物理医学与康复 基因 化学 程序设计语言 生物化学
作者
Jia Zeng,Yu Zhou,Yicheng Yang,Jipeng Yan,Yinfeng Fang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 1718-1725 被引量:24
标识
DOI:10.1109/jbhi.2021.3122277
摘要

Though physiological signal based human-machine interfaces (HMIs) have recently developed rapidly, their practical use is restricted by many real-world environmental factors, one of which is muscle fatigue. This paper explores the sensitivities between surface electromyography (sEMG) and A-mode ultrasound (AUS) sensing modalities subject to muscle fatigue in the context of hand gesture recognition tasks. Two metrics, mean classification accuracy ( mCA) and decline rate ( DR), are proposed to evaluate the accuracy and muscle fatigue sensitivity between sEMG and AUS based HMIs. Muscle fatigue inducing experiment was designed and eight subjects were recruited to participate in the experiment. The gesture recognition accuracies of sEMG and AUS under non-fatigue state and fatigue state are compared through Mahalanobis distance based classifier linear discriminant analysis (LDA). In addition, Mahalanobis distance based metrics, repeatability index ( RI) and separability index ( SI), are introduced to evaluate the changes in the feature distribution during muscle fatigue and reveal the cause of the fatigue sensitivity difference between sEMG and AUS signals. The experimental results demonstrate that the fatigue robustness of AUS signal is better than that of sEMG signal. Specifically, with the employment of the LDA classifier trained under non-fatigue state, the testing accuracy of the sEMG signal on the non-fatigue state is 94.96%, while reduce to 68.26% on the fatigue state. The testing accuracy of the AUS signal on the corresponding states is 99.68% and 91.24% respectively. AUS signal attains higher mCA and lower DR, indicating that it has advantages over sEMG signal in terms of both accuracy and muscle fatigue sensitivity. In addition, the RI and RI/SI analysis reveal that before and after muscle fatigue, the consistency of AUS feature distribution is better than that of sEMG. These research outcomes validate that AUS is more tolerant to feature migration caused by muscle fatigue than sEMG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许鑫蓁完成签到 ,获得积分10
刚刚
lulu加油完成签到,获得积分10
1秒前
1秒前
xiangrikui发布了新的文献求助10
1秒前
牛马完成签到 ,获得积分10
2秒前
科研通AI5应助WJH采纳,获得10
3秒前
Zard发布了新的文献求助10
3秒前
王冉冉完成签到,获得积分10
4秒前
ryan1300完成签到 ,获得积分10
4秒前
易拉罐完成签到,获得积分10
4秒前
ZQ完成签到,获得积分10
4秒前
yyds完成签到,获得积分20
4秒前
4秒前
5秒前
彭于晏应助刘宇采纳,获得10
5秒前
6秒前
leeom发布了新的文献求助10
8秒前
Timo干物类完成签到,获得积分10
8秒前
北冥有鱼给北冥有鱼的求助进行了留言
8秒前
8秒前
王冉冉发布了新的文献求助30
8秒前
Ava应助易拉罐采纳,获得10
9秒前
隐形曼青应助无心的土豆采纳,获得10
9秒前
乐于助人大好人完成签到 ,获得积分10
9秒前
ZZQ完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
Lina HE完成签到 ,获得积分10
13秒前
852应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
进步完成签到,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
iNk应助dh采纳,获得20
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048