Unprecedented strong and reversible atomic orbital hybridization enables a highly stable Li–S battery

聚苯胺 阴极 硫黄 电池(电) 材料科学 电极 纳米技术 原子单位 轨道杂交 分子轨道 化学物理 化学工程 化学 物理化学 物理 复合材料 分子 分子轨道理论 有机化学 聚合物 热力学 工程类 功率(物理) 冶金 量子力学 聚合
作者
Min Yan,Wenda Dong,Fu Liu,Lihua Chen,Tawfique Hasan,Yu Li,Bao‐Lian Su
出处
期刊:National Science Review [Oxford University Press]
卷期号:9 (7) 被引量:16
标识
DOI:10.1093/nsr/nwac078
摘要

The shuttle effect and excessive volume change of the sulfur cathode severely impede the industrial implementation of Li-S batteries. It is still highly challenging to find an efficient way to suppress the shuttle effect and volume expansion. Here, we report, for the first time, an innovative atomic orbital hybridization concept to construct the hierarchical hollow sandwiched sulfur nanospheres with double-polyaniline layers as the cathode material for large-scale high-performance Li-S batteries. This hierarchically 3D, cross-linked and stable sulfur-polyaniline backbone with interconnected disulfide bonds provides a new type and strong intrinsic chemical confinement of sulfur owing to the atomic orbital hybridization of Li 2s, S 3p, C 2p and N 2p. Crucially, such atomic orbital hybridization of sulfur sandwiched in the double sulfur-polyaniline network is highly reversible during the discharge/charge process and can very efficiently suppress the shuttle effect and volume expansion, contributing to a very high capacity of 1142 mAh g-1 and an excellent stabilized capacity of 886 mAh g-1 at 0.2 C after 500 cycles with a suppressed volume expansion and an unprecedented electrode integrity. This innovative atomic orbital hybridization concept can be extended to the preparation of other electrode materials to eliminate the shuttle effect and volume expansion in battery technologies. The present work also provides a commercially viable and up-scalable cathode material based on this strong and highly reversible atomic orbital hybridation for large-scale high-performance Li-S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助魔幻的熊猫采纳,获得10
1秒前
顾翩翩完成签到,获得积分10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
双黄应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
Chem应助科研通管家采纳,获得10
2秒前
持卿应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
李健应助风华正茂采纳,获得10
4秒前
hanyang965发布了新的文献求助10
6秒前
7秒前
7秒前
飘逸问兰发布了新的文献求助10
8秒前
8秒前
9秒前
调研昵称发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助无私芒果采纳,获得10
13秒前
13秒前
14秒前
田家溢完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
优美从菡发布了新的文献求助10
19秒前
斯文败类应助莫之白采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943159
关于积分的说明 8512950
捐赠科研通 2618384
什么是DOI,文献DOI怎么找? 1431040
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540