A Task Decomposing and Cell Comparing Method for Cervical Lesion Cell Detection.

计算机科学 人工智能 病变 任务(项目管理) 特征(语言学) 宫颈癌 模式识别(心理学) 目标检测
作者
Tingting Chen,Wenhao Zheng,Haochao Ying,Xiangyu Tan,Kexin Li,Xiaoping Li,Danny Z Chen,Jian Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3163171
摘要

Automatic detection of cervical lesion cells or cell clumps using cervical cytology images is critical to computer-aided diagnosis (CAD) for accurate, objective, and efficient cervical cancer screening. Recently, many methods based on modern object detectors were proposed and showed great potential for automatic cervical lesion detection. Although effective, several issues still hinder further performance improvement of such known methods, such as large appearance variances between single-cell and multi-cell lesion regions, neglecting normal cells, and visual similarity among abnormal cells. To tackle these issues, we propose a new task decomposing and cell comparing network, called TDCC-Net, for cervical lesion cell detection. Specifically, our task decomposing scheme decomposes the original detection task into two subtasks and models them separately, which aims to learn more efficient and useful feature representations for specific cell structures and then improve the detection performance of the original task. Our cell comparing scheme imitates clinical diagnosis of experts and performs cell comparison with a dynamic comparing module (normal-abnormal cells comparing) and an instance contrastive loss (abnormal-abnormal cells comparing). Comprehensive experiments on a large cervical cytology image dataset confirm the superiority of our method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今晚吃什么呢完成签到,获得积分10
3秒前
4秒前
bmj完成签到 ,获得积分10
4秒前
小小旭呀完成签到,获得积分10
5秒前
crack完成签到,获得积分10
6秒前
7秒前
panpanliumin完成签到,获得积分0
8秒前
8秒前
希望天下0贩的0应助ch采纳,获得10
8秒前
9秒前
puppyNk发布了新的文献求助10
9秒前
高高的涔发布了新的文献求助10
9秒前
万能图书馆应助魔幻灵槐采纳,获得10
10秒前
Clover完成签到,获得积分10
11秒前
crack发布了新的文献求助10
13秒前
小刘紧张发布了新的文献求助10
13秒前
桐桐应助we采纳,获得10
13秒前
熙泽完成签到,获得积分10
14秒前
JY完成签到,获得积分10
15秒前
17秒前
puppyNk完成签到,获得积分10
18秒前
20秒前
xiaoyang应助刘善行采纳,获得10
20秒前
科研通AI5应助秦彻采纳,获得10
21秒前
22秒前
爆米花应助plastic2024采纳,获得10
22秒前
bankxiu发布了新的文献求助10
22秒前
无心的若山完成签到,获得积分10
22秒前
zhlh发布了新的文献求助10
26秒前
26秒前
却依然发布了新的文献求助30
27秒前
昏睡小吕完成签到,获得积分20
27秒前
丰富青完成签到,获得积分20
27秒前
Xi完成签到,获得积分10
29秒前
29秒前
30秒前
任大师兄应助愤怒的qiang采纳,获得10
30秒前
32秒前
魔幻灵槐发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794