A Task Decomposing and Cell Comparing Method for Cervical Lesion Cell Detection.

计算机科学 人工智能 病变 任务(项目管理) 特征(语言学) 宫颈癌 模式识别(心理学) 目标检测
作者
Tingting Chen,Wenhao Zheng,Haochao Ying,Xiangyu Tan,Kexin Li,Xiaoping Li,Danny Z Chen,Jian Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3163171
摘要

Automatic detection of cervical lesion cells or cell clumps using cervical cytology images is critical to computer-aided diagnosis (CAD) for accurate, objective, and efficient cervical cancer screening. Recently, many methods based on modern object detectors were proposed and showed great potential for automatic cervical lesion detection. Although effective, several issues still hinder further performance improvement of such known methods, such as large appearance variances between single-cell and multi-cell lesion regions, neglecting normal cells, and visual similarity among abnormal cells. To tackle these issues, we propose a new task decomposing and cell comparing network, called TDCC-Net, for cervical lesion cell detection. Specifically, our task decomposing scheme decomposes the original detection task into two subtasks and models them separately, which aims to learn more efficient and useful feature representations for specific cell structures and then improve the detection performance of the original task. Our cell comparing scheme imitates clinical diagnosis of experts and performs cell comparison with a dynamic comparing module (normal-abnormal cells comparing) and an instance contrastive loss (abnormal-abnormal cells comparing). Comprehensive experiments on a large cervical cytology image dataset confirm the superiority of our method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三连环发布了新的文献求助10
刚刚
1秒前
jagger完成签到,获得积分10
2秒前
里里发布了新的文献求助10
3秒前
3秒前
123完成签到,获得积分10
4秒前
5秒前
花楹完成签到,获得积分10
6秒前
ug发布了新的文献求助10
6秒前
XMUZH完成签到 ,获得积分10
8秒前
9秒前
机械学渣发布了新的文献求助10
10秒前
Q123ba叭发布了新的文献求助10
10秒前
忐忑的邑完成签到,获得积分10
11秒前
文静的电灯胆完成签到,获得积分10
14秒前
14秒前
星星发布了新的文献求助10
15秒前
希望天下0贩的0应助cai采纳,获得10
15秒前
薰硝壤应助小星星采纳,获得10
15秒前
伯爵完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
马桶盖盖子完成签到 ,获得积分10
19秒前
麦乐迪完成签到 ,获得积分10
19秒前
19秒前
21秒前
21秒前
22秒前
能HJY完成签到,获得积分10
22秒前
Ava应助ppprotein采纳,获得10
22秒前
星辰大海应助椿iii采纳,获得10
23秒前
研友_nPol2L完成签到,获得积分20
23秒前
超帅连虎完成签到,获得积分10
24秒前
24秒前
李爱国应助ug采纳,获得10
24秒前
闻歌发布了新的文献求助10
25秒前
myit发布了新的文献求助10
25秒前
26秒前
GQ发布了新的文献求助30
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023