Cyber Code Intelligence for Android Malware Detection

操作码 恶意软件 计算机科学 Android恶意软件 Android(操作系统) 隐病毒学 恶意软件分析 机器学习 人工智能 分类器(UML) 计算机安全 操作系统
作者
Junyang Qiu,Qing‐Long Han,Wei Luo,Lei Pan,‪Surya Nepal‬,Jun Zhang,Yang Xiang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 617-627 被引量:25
标识
DOI:10.1109/tcyb.2022.3164625
摘要

Evolving Android malware poses a severe security threat to mobile users, and machine-learning (ML)-based defense techniques attract active research. Due to the lack of knowledge, many zero-day families' malware may remain undetected until the classifier gains specialized knowledge. The most existing ML-based methods will take a long time to learn new malware families in the latest malware family landscape. Existing ML-based Android malware detection and classification methods struggle with the fast evolution of the malware landscape, particularly in terms of the emergence of zero-day malware families and limited representation of single-view features. In this article, a new multiview feature intelligence (MFI) framework is developed to learn the representation of a targeted capability from known malware families for recognizing unknown and evolving malware with the same capability. The new framework performs reverse engineering to extract multiview heterogeneous features, including semantic string features, API call graph features, and smali opcode sequential features. It can learn the representation of a targeted capability from known malware families through a series of processes of feature analysis, selection, aggregation, and encoding, to detect unknown Android malware with shared target capability. We create a new dataset with ground-truth information regarding capability. Many experiments are conducted on the new dataset to evaluate the performance and effectiveness of the new method. The results demonstrate that the new method outperforms three state-of-the-art methods, including: 1) Drebin; 2) MaMaDroid; and 3) N -opcode, when detecting unknown Android malware with targeted capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周乘风发布了新的文献求助10
1秒前
科目三应助sanbai-li采纳,获得10
1秒前
ycxlb完成签到,获得积分10
3秒前
3秒前
CipherSage应助大气小天鹅采纳,获得10
4秒前
5秒前
7秒前
7秒前
7秒前
十七应助xxx采纳,获得10
8秒前
Lucas应助Dr.Liujun采纳,获得10
9秒前
小璐sunny发布了新的文献求助10
10秒前
11秒前
可乐完成签到,获得积分10
11秒前
无私小小完成签到,获得积分10
12秒前
xxy发布了新的文献求助10
12秒前
领导范儿应助年轻海安采纳,获得10
15秒前
18秒前
英姑应助Aurora采纳,获得10
18秒前
dream完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
柒辞完成签到,获得积分10
21秒前
Ca完成签到,获得积分10
21秒前
dudao完成签到,获得积分10
21秒前
22秒前
田様应助lily采纳,获得30
25秒前
万从灵发布了新的文献求助10
25秒前
CodeCraft应助求文采纳,获得10
25秒前
中单阿飞发布了新的文献求助10
26秒前
完美世界应助dudao采纳,获得10
26秒前
Anquan完成签到,获得积分10
26秒前
充电宝应助cccym采纳,获得10
31秒前
碧蓝傲南完成签到,获得积分20
31秒前
大个应助fxxya采纳,获得10
32秒前
万从灵完成签到,获得积分10
32秒前
脑洞疼应助dd采纳,获得10
34秒前
椿·完成签到,获得积分10
36秒前
37秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387900
求助须知:如何正确求助?哪些是违规求助? 3000440
关于积分的说明 8791481
捐赠科研通 2686501
什么是DOI,文献DOI怎么找? 1471660
科研通“疑难数据库(出版商)”最低求助积分说明 680424
邀请新用户注册赠送积分活动 673174