A no-Reference Stereoscopic Image Quality Assessment Network Based on Binocular Interaction and Fusion Mechanisms

立体视 计算机科学 人工智能 计算机视觉 人类视觉系统模型 图像质量 视皮层 双眼视觉 双眼视差 图像融合 卷积(计算机科学) 公制(单位) 人工神经网络 图像(数学) 工程类 心理学 运营管理 神经科学
作者
Jianwei Si,Baoxiang Huang,Huan Yang,Lin Wang,Zhenkuan Pan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3066-3080 被引量:16
标识
DOI:10.1109/tip.2022.3164537
摘要

In contemporary society full of stereoscopic images, how to assess visual quality of 3D images has attracted an increasing attention in field of Stereoscopic Image Quality Assessment (SIQA). Compared with 2D-IQA, SIQA is more challenging because some complicated features of Human Visual System (HVS), such as binocular interaction and binocular fusion, must be considered. In this paper, considering both binocular interaction and fusion mechanisms of the HVS, a hierarchical no-reference stereoscopic image quality assessment network (StereoIF-Net) is proposed to simulate the whole quality perception of 3D visual signals in human cortex, including two key modules: BIM and BFM. In particular, Binocular Interaction Modules (BIMs) are constructed to simulate binocular interaction in V2-V5 visual cortex regions, in which a novel cross convolution is designed to explore the interaction details in each region. In the BIMs, different output channel numbers are designed to imitate various receptive fields in V2-V5. Furthermore, a Binocular Fusion Module (BFM) with automatic learned weights is proposed to model binocular fusion of the HVS in higher cortex layers. The verification experiments are conducted on the LIVE 3D, IVC and Waterloo-IVC SIQA databases and three indices including PLCC, SROCC and RMSE are employed to evaluate the assessment consistency between StereoIF-Net and the HVS. The proposed StereoIF-Net achieves almost the best results compared with advanced SIQA methods. Specifically, the metric values on LIVE 3D, IVC and WIVC-I are the best, and are the second-best on the WIVC-II.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾夏包完成签到,获得积分10
1秒前
小土豆发布了新的文献求助50
2秒前
科研通AI5应助跑在颖采纳,获得10
2秒前
追寻代真发布了新的文献求助10
3秒前
mrmrer完成签到,获得积分20
3秒前
3秒前
3秒前
毛慢慢发布了新的文献求助10
4秒前
4秒前
今天不学习明天变垃圾完成签到,获得积分10
4秒前
5秒前
5秒前
布布完成签到,获得积分10
6秒前
一独白发布了新的文献求助10
6秒前
周周完成签到 ,获得积分10
6秒前
淡然完成签到,获得积分10
7秒前
明理小土豆完成签到,获得积分10
7秒前
刘国建郭菱香完成签到,获得积分10
7秒前
嘤嘤嘤完成签到,获得积分10
7秒前
九川应助粱自中采纳,获得10
7秒前
无辜之卉完成签到,获得积分10
8秒前
无花果应助Island采纳,获得10
8秒前
8秒前
SHDeathlock发布了新的文献求助200
9秒前
Owen应助醒醒采纳,获得10
9秒前
无心的代桃完成签到,获得积分10
10秒前
追寻代真完成签到,获得积分10
10秒前
晓兴兴完成签到,获得积分10
10秒前
leon发布了新的文献求助10
11秒前
洽洽瓜子shine完成签到,获得积分10
11秒前
简单的大白菜真实的钥匙完成签到,获得积分10
12秒前
13秒前
一独白完成签到,获得积分10
14秒前
在水一方应助坚强的樱采纳,获得10
14秒前
慕青应助尼亚吉拉采纳,获得10
15秒前
快乐小白菜应助甜酱采纳,获得10
15秒前
15秒前
qq应助毛慢慢采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762