Deep Perceptual Enhancement for Medical Image Analysis

计算机科学 人工智能 计算机视觉 医学影像学 深度学习 图像质量 残余物 对比度增强 卷积神经网络 亮度 医学诊断 噪音(视频) 模式识别(心理学) 图像(数学) 医学 算法 放射科 病理 磁共振成像
作者
S. M. A. Sharif,Rizwan Ali Naqvi,Mithun Biswas,Woong-Kee Loh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4826-4836 被引量:10
标识
DOI:10.1109/jbhi.2022.3168604
摘要

Due to numerous hardware shortcomings, medical image acquisition devices are susceptible to producing low-quality (i.e., low contrast, inappropriate brightness, noisy, etc.) images. Regrettably, perceptually degraded images directly impact the diagnosis process and make the decision-making manoeuvre of medical practitioners notably complicated. This study proposes to enhance such low-quality images by incorporating end-to-end learning strategies for accelerating medical image analysis tasks. To the best concern, this is the first work in medical imaging which comprehensively tackles perceptual enhancement, including contrast correction, luminance correction, denoising, etc., with a fully convolutional deep network. The proposed network leverages residual blocks and a residual gating mechanism for diminishing visual artefacts and is guided by a multi-term objective function to perceive the perceptually plausible enhanced images. The practicability of the deep medical image enhancement method has been extensively investigated with sophisticated experiments. The experimental outcomes illustrate that the proposed method could outperform the existing enhancement methods for different medical image modalities by 5.00 to 7.00 dB in peak signal-to-noise ratio (PSNR) metrics and 4.00 to 6.00 in DeltaE metrics. Additionally, the proposed method can drastically improve the medical image analysis tasks' performance and reveal the potentiality of such an enhancement method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满小兔子完成签到,获得积分10
刚刚
刚刚
共享精神应助phz采纳,获得10
1秒前
喵了个咪完成签到 ,获得积分10
1秒前
科研通AI5应助俭朴夜雪采纳,获得10
1秒前
1秒前
頑皮燕姿完成签到,获得积分10
1秒前
1秒前
丁德乐可发布了新的文献求助10
2秒前
Minkslion完成签到,获得积分10
2秒前
於松完成签到,获得积分10
2秒前
2秒前
yyyy发布了新的文献求助10
3秒前
稳重无剑完成签到,获得积分10
4秒前
wuha完成签到,获得积分10
4秒前
4秒前
欢喜从霜完成签到,获得积分10
5秒前
Orange应助LiShin采纳,获得10
5秒前
5秒前
欣慰友梅完成签到,获得积分10
5秒前
6秒前
llllllll发布了新的文献求助10
6秒前
6秒前
6秒前
CC完成签到,获得积分10
6秒前
wwuu发布了新的文献求助10
7秒前
shenyanlei发布了新的文献求助10
7秒前
一汁蟹发布了新的文献求助20
8秒前
大个应助绿麦盲区采纳,获得10
8秒前
雨齐完成签到,获得积分10
8秒前
茶艺如何发布了新的文献求助10
8秒前
8秒前
kk完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
yyyy完成签到,获得积分10
10秒前
好好学习天天向上完成签到,获得积分10
10秒前
欣慰友梅发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762