Deep Perceptual Enhancement for Medical Image Analysis

计算机科学 人工智能 计算机视觉 医学影像学 深度学习 图像质量 残余物 对比度增强 卷积神经网络 亮度 医学诊断 噪音(视频) 模式识别(心理学) 图像(数学) 医学 算法 放射科 病理 磁共振成像
作者
S. M. A. Sharif,Rizwan Ali Naqvi,Mithun Biswas,Woong-Kee Loh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4826-4836 被引量:10
标识
DOI:10.1109/jbhi.2022.3168604
摘要

Due to numerous hardware shortcomings, medical image acquisition devices are susceptible to producing low-quality (i.e., low contrast, inappropriate brightness, noisy, etc.) images. Regrettably, perceptually degraded images directly impact the diagnosis process and make the decision-making manoeuvre of medical practitioners notably complicated. This study proposes to enhance such low-quality images by incorporating end-to-end learning strategies for accelerating medical image analysis tasks. To the best concern, this is the first work in medical imaging which comprehensively tackles perceptual enhancement, including contrast correction, luminance correction, denoising, etc., with a fully convolutional deep network. The proposed network leverages residual blocks and a residual gating mechanism for diminishing visual artefacts and is guided by a multi-term objective function to perceive the perceptually plausible enhanced images. The practicability of the deep medical image enhancement method has been extensively investigated with sophisticated experiments. The experimental outcomes illustrate that the proposed method could outperform the existing enhancement methods for different medical image modalities by 5.00 to 7.00 dB in peak signal-to-noise ratio (PSNR) metrics and 4.00 to 6.00 in DeltaE metrics. Additionally, the proposed method can drastically improve the medical image analysis tasks' performance and reveal the potentiality of such an enhancement method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈晶发布了新的文献求助10
1秒前
1秒前
小蘑菇应助julien采纳,获得10
2秒前
2秒前
松鼠爱学习完成签到 ,获得积分10
2秒前
3秒前
丘比特应助明理的凌旋采纳,获得10
4秒前
你管得着吗完成签到,获得积分20
4秒前
1111发布了新的文献求助10
5秒前
蓝蓝关注了科研通微信公众号
5秒前
6秒前
7秒前
MM发布了新的文献求助10
8秒前
srics发布了新的文献求助10
9秒前
9秒前
10秒前
Milou发布了新的文献求助10
12秒前
沈怡弘发布了新的文献求助10
12秒前
科研通AI5应助超级盼海采纳,获得10
13秒前
sunlanglang完成签到,获得积分20
14秒前
SilvanYang应助科研通管家采纳,获得30
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Sun发布了新的文献求助10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
14秒前
英姑应助科研通管家采纳,获得30
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
李健应助科研通管家采纳,获得10
15秒前
15秒前
直率向薇发布了新的文献求助10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
memo应助科研通管家采纳,获得200
15秒前
慕青应助科研通管家采纳,获得10
16秒前
zho应助科研通管家采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214