Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 认识论 程序设计语言 操作系统
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助不见木棉采纳,获得10
刚刚
goodluck发布了新的文献求助10
刚刚
不吃香菜发布了新的文献求助10
1秒前
科研通AI6.1应助102755采纳,获得10
1秒前
2秒前
gky发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Jasper应助觉大王睡采纳,获得10
2秒前
2秒前
2秒前
2秒前
在水一方应助专注钢笔采纳,获得10
2秒前
Oo完成签到,获得积分10
3秒前
fang完成签到,获得积分10
4秒前
华仔应助罗小白采纳,获得10
5秒前
Tenacity完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小任同学要努力完成签到 ,获得积分10
6秒前
无花果应助GC采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
里lilili发布了新的文献求助10
7秒前
言兼完成签到,获得积分10
8秒前
8秒前
隐形曼青应助卷心小菜狗采纳,获得30
9秒前
9秒前
9秒前
9秒前
9秒前
CodeCraft应助汉堡采纳,获得10
10秒前
觉大王睡完成签到,获得积分10
10秒前
10秒前
英姑应助一只云采纳,获得10
10秒前
10秒前
11秒前
容蓉发布了新的文献求助10
12秒前
尤一一完成签到,获得积分10
14秒前
伊yan完成签到 ,获得积分10
14秒前
大个应助不不同学采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965