Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
llllllll发布了新的文献求助10
2秒前
2秒前
wym完成签到,获得积分10
2秒前
共享精神应助刘刘佳采纳,获得10
2秒前
英俊的铭应助WELL123采纳,获得10
2秒前
小可爱发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
lucky完成签到 ,获得积分20
3秒前
奋斗遥完成签到,获得积分20
4秒前
大方明杰发布了新的文献求助10
5秒前
5秒前
6秒前
SciGPT应助王珂采纳,获得10
6秒前
昏迷树袋熊完成签到,获得积分10
6秒前
chen发布了新的文献求助10
6秒前
清爽老九发布了新的文献求助10
7秒前
zz发布了新的文献求助10
8秒前
8秒前
涵涵发布了新的文献求助10
8秒前
8秒前
英俊的铭应助文俊伟采纳,获得10
8秒前
9秒前
9秒前
9秒前
yanice发布了新的文献求助10
10秒前
RLV发布了新的文献求助10
11秒前
11秒前
大白菜发布了新的文献求助10
11秒前
hui完成签到,获得积分10
12秒前
莎莎发布了新的文献求助10
13秒前
recardo完成签到,获得积分10
13秒前
13秒前
科研通AI6应助我是谁采纳,获得10
14秒前
田様应助外向梦山采纳,获得10
14秒前
14秒前
15秒前
danniers完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158544
求助须知:如何正确求助?哪些是违规求助? 4353320
关于积分的说明 13554829
捐赠科研通 4196776
什么是DOI,文献DOI怎么找? 2301806
邀请新用户注册赠送积分活动 1301655
关于科研通互助平台的介绍 1246794