Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助银鱼在游采纳,获得10
刚刚
寒冷白亦完成签到 ,获得积分10
1秒前
酷波er应助哈哈哈哈采纳,获得10
1秒前
if发布了新的文献求助10
2秒前
牧歌完成签到,获得积分10
2秒前
于鱼发布了新的文献求助10
2秒前
852应助时丶倾采纳,获得10
3秒前
小包子到处跑完成签到,获得积分10
3秒前
ADDED完成签到,获得积分10
3秒前
4秒前
zrl发布了新的文献求助10
4秒前
6秒前
马格发布了新的文献求助10
6秒前
7秒前
热心夏天发布了新的文献求助10
7秒前
yumi完成签到,获得积分10
8秒前
包容代芹发布了新的文献求助10
8秒前
食杂砸发布了新的文献求助10
9秒前
CipherSage应助zzz采纳,获得10
10秒前
Yasmine完成签到 ,获得积分10
11秒前
MiaoRui完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
丘比特应助if采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
Vivid完成签到,获得积分10
14秒前
时丶倾发布了新的文献求助10
16秒前
16秒前
semigreen完成签到 ,获得积分10
17秒前
木木发布了新的文献求助10
18秒前
夜雨完成签到,获得积分10
18秒前
木木木熙完成签到,获得积分10
18秒前
哈哈哈哈发布了新的文献求助10
18秒前
Lucia完成签到 ,获得积分10
19秒前
20秒前
21秒前
孙颖发布了新的文献求助10
21秒前
seedcode完成签到,获得积分10
21秒前
早睡早起身体好Q完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858