亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 认识论 程序设计语言 操作系统
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmjmj发布了新的文献求助10
2秒前
9秒前
14秒前
Criminology34举报yuanjie求助涉嫌违规
17秒前
清秀的宝马完成签到 ,获得积分10
17秒前
比青云完成签到,获得积分10
20秒前
若宫伊芙完成签到,获得积分10
22秒前
英姑应助zmjmj采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
adkdad完成签到,获得积分10
30秒前
36秒前
37秒前
oooaini发布了新的文献求助10
41秒前
无花果应助bigalexwei采纳,获得10
41秒前
量子星尘发布了新的文献求助10
42秒前
42秒前
43秒前
44秒前
dywen完成签到,获得积分10
45秒前
不许焦绿o发布了新的文献求助10
46秒前
48秒前
村长发布了新的文献求助10
48秒前
50秒前
54秒前
oooaini完成签到,获得积分10
54秒前
55秒前
whh123完成签到 ,获得积分10
56秒前
56秒前
56秒前
Moonlight完成签到 ,获得积分10
58秒前
58秒前
bigalexwei发布了新的文献求助10
59秒前
李健的小迷弟应助oooaini采纳,获得10
59秒前
DrW完成签到,获得积分10
1分钟前
大白菜芥末菜完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921