Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 认识论 程序设计语言 操作系统
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素简发布了新的文献求助10
1秒前
1秒前
1+1发布了新的文献求助10
2秒前
123456发布了新的文献求助20
2秒前
独特元蝶完成签到,获得积分20
2秒前
2秒前
123完成签到,获得积分20
2秒前
liuwy发布了新的文献求助10
3秒前
3秒前
徐老师完成签到 ,获得积分10
4秒前
独特元蝶发布了新的文献求助10
5秒前
傅。完成签到,获得积分10
5秒前
小何发布了新的文献求助10
6秒前
龍Ryu发布了新的文献求助10
6秒前
深情安青应助祝你开心采纳,获得10
6秒前
qu完成签到 ,获得积分20
7秒前
7秒前
深情安青应助xzm采纳,获得10
7秒前
8秒前
轨迹应助Queena采纳,获得10
8秒前
8秒前
瓜6发布了新的文献求助10
8秒前
9秒前
123发布了新的文献求助30
9秒前
9秒前
9秒前
Aria完成签到,获得积分10
10秒前
10秒前
素简完成签到,获得积分10
10秒前
11秒前
多金多金发布了新的文献求助10
12秒前
12秒前
13秒前
小理事完成签到,获得积分10
13秒前
77发布了新的文献求助10
13秒前
邹咕噜发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
Lucas应助iuhgnor采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082