Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的修洁完成签到 ,获得积分20
2秒前
侃侃完成签到,获得积分10
3秒前
科目三应助潇潇雨歇采纳,获得10
4秒前
英姑应助积极的明天采纳,获得10
8秒前
666应助牧鱼采纳,获得10
9秒前
yyy完成签到,获得积分10
11秒前
cherish完成签到,获得积分10
14秒前
15秒前
儒雅沛蓝完成签到,获得积分10
17秒前
不能说的秘密完成签到,获得积分10
22秒前
勤奋笑卉完成签到 ,获得积分10
22秒前
HOPKINSON完成签到,获得积分10
25秒前
aaaa完成签到,获得积分10
25秒前
lanlan完成签到 ,获得积分10
25秒前
大个应助Jenny采纳,获得10
25秒前
大模型应助潇潇雨歇采纳,获得20
28秒前
sssssssssss完成签到,获得积分10
29秒前
Julia完成签到,获得积分10
30秒前
31秒前
33秒前
Stove完成签到,获得积分10
34秒前
atom完成签到,获得积分10
35秒前
36秒前
qiang发布了新的文献求助10
36秒前
satan9发布了新的文献求助10
38秒前
liuyf完成签到 ,获得积分10
39秒前
Akim应助潇潇雨歇采纳,获得20
43秒前
杜兰特发布了新的文献求助10
43秒前
44秒前
Xiaoxiao应助yyauthor采纳,获得20
45秒前
pppsci完成签到,获得积分10
49秒前
jjj应助qiang采纳,获得20
52秒前
小二郎应助科研通管家采纳,获得10
55秒前
凡迪亚比应助科研通管家采纳,获得30
55秒前
隐形曼青应助科研通管家采纳,获得10
55秒前
小马甲应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
bohn123完成签到 ,获得积分10
57秒前
兔子里的乌龟完成签到 ,获得积分10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351