亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lusharon完成签到,获得积分10
9秒前
能干彤完成签到,获得积分10
16秒前
爆米花应助anru采纳,获得10
22秒前
能干彤发布了新的文献求助10
22秒前
田様应助微光熠采纳,获得10
32秒前
44秒前
粽子完成签到,获得积分10
55秒前
健壮的土豆完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zila发布了新的文献求助10
1分钟前
852应助liuzhr采纳,获得10
1分钟前
meant发布了新的文献求助10
1分钟前
丘比特应助00采纳,获得10
1分钟前
1分钟前
小西完成签到 ,获得积分10
1分钟前
黄陈涛完成签到 ,获得积分10
1分钟前
zila完成签到,获得积分10
1分钟前
代总发布了新的文献求助10
1分钟前
思源应助輕瘋采纳,获得10
1分钟前
1分钟前
无语的傥发布了新的文献求助20
1分钟前
00发布了新的文献求助10
1分钟前
meant发布了新的文献求助10
1分钟前
领导范儿应助代总采纳,获得10
2分钟前
机智的皮皮虾完成签到 ,获得积分10
2分钟前
2分钟前
anru发布了新的文献求助10
2分钟前
基金中中中完成签到,获得积分10
2分钟前
2分钟前
上官若男应助从容的远望采纳,获得10
2分钟前
2分钟前
孙漪发布了新的文献求助10
2分钟前
传奇3应助anru采纳,获得10
2分钟前
meant发布了新的文献求助30
2分钟前
輕瘋发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681410
求助须知:如何正确求助?哪些是违规求助? 5007317
关于积分的说明 15175495
捐赠科研通 4840925
什么是DOI,文献DOI怎么找? 2594681
邀请新用户注册赠送积分活动 1547728
关于科研通互助平台的介绍 1505719