Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助lily336699采纳,获得10
1秒前
星辰大海应助危机的茗采纳,获得10
1秒前
kk发布了新的文献求助10
3秒前
4秒前
可靠的寒风完成签到,获得积分10
6秒前
FashionBoy应助小朱同学采纳,获得10
8秒前
8秒前
devilito发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
拓跋康发布了新的文献求助10
12秒前
13秒前
MY999发布了新的文献求助10
13秒前
串串完成签到,获得积分10
13秒前
乐乐应助kk采纳,获得10
14秒前
大号安全蛋完成签到,获得积分10
14秒前
科研通AI2S应助见过采纳,获得10
15秒前
16秒前
伯赏汝燕发布了新的文献求助20
16秒前
16秒前
xiaoZ发布了新的文献求助10
17秒前
是你的雨发布了新的文献求助10
17秒前
赘婿应助串串采纳,获得10
18秒前
Maestro_S应助月牙湾采纳,获得20
18秒前
19秒前
19秒前
Owen应助cc采纳,获得10
20秒前
尊敬伟宸发布了新的文献求助10
21秒前
所所应助水值采纳,获得10
21秒前
领导范儿应助兮兮采纳,获得10
22秒前
Jerry20184完成签到 ,获得积分10
25秒前
科研通AI2S应助驰月采纳,获得10
26秒前
26秒前
li发布了新的文献求助10
28秒前
28秒前
JamesPei应助杏杏采纳,获得10
28秒前
30秒前
31秒前
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742