亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 认识论 程序设计语言 操作系统
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
15秒前
33秒前
33秒前
天天快乐应助科研通管家采纳,获得10
34秒前
汉堡包应助桃子e采纳,获得10
41秒前
50秒前
桃子e发布了新的文献求助10
53秒前
伊伊伊伊一一一完成签到,获得积分10
1分钟前
ding应助scn666采纳,获得10
1分钟前
思源应助桃子e采纳,获得10
1分钟前
欣喜的香菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
难过忆山发布了新的文献求助10
2分钟前
英姑应助Zz采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hq完成签到 ,获得积分10
3分钟前
3分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
天天快乐应助Fluoxtine采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
5分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
5分钟前
5分钟前
科研通AI6.1应助jyy采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617