Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 操作系统 程序设计语言 认识论
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
MissZhang发布了新的文献求助10
2秒前
Lzy发布了新的文献求助10
2秒前
2秒前
大宝儿完成签到,获得积分10
3秒前
4秒前
大模型应助蜡笔小新采纳,获得10
4秒前
Re发布了新的文献求助10
4秒前
5秒前
wswswsws发布了新的文献求助30
6秒前
Wang发布了新的文献求助10
7秒前
7秒前
啵啵完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
林西雨发布了新的文献求助10
8秒前
李昊隆完成签到,获得积分20
8秒前
Chelsea完成签到,获得积分10
9秒前
9秒前
10秒前
刘西西发布了新的文献求助10
11秒前
rr发布了新的文献求助20
11秒前
科学修仙完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
超级欧皇的好宝宝完成签到 ,获得积分10
12秒前
yydd发布了新的文献求助10
12秒前
13秒前
wu发布了新的文献求助10
13秒前
14秒前
科学修仙发布了新的文献求助10
14秒前
SciGPT应助清脆雪糕采纳,获得10
15秒前
所所应助ceeray23采纳,获得20
15秒前
方賢完成签到,获得积分10
17秒前
一颗葡萄完成签到 ,获得积分10
17秒前
打打应助李博士采纳,获得30
18秒前
陈琛发布了新的文献求助10
18秒前
冰糖葫芦完成签到,获得积分20
18秒前
Fa发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222