Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation

计算机科学 管道(软件) 姿势 人工智能 基本事实 依赖关系(UML) 三维姿态估计 机器学习 投影(关系代数) 质量(理念) 刮擦 三维模型 模式识别(心理学) 计算机视觉 算法 哲学 认识论 程序设计语言 操作系统
作者
Hanbyul Joo,Natalia Neverova,Andrea Vedaldi
标识
DOI:10.1109/3dv53792.2021.00015
摘要

Differently from 2D image datasets such as COCO, largescale human datasets with 3D ground-truth annotations are very difficult to obtain in the wild. In this paper, we address this problem by augmenting existing 2D datasets with high-quality 3D pose fits. Remarkably, the resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in the-wild benchmarks such as 3DPW. Additionally, training on our augmented data is straightforward as it does not require to mix multiple and incompatible 2D and 3D datasets or to use complicated network architectures and training procedures. This simplified pipeline affords additional improvements, including injecting extreme crop augmentations to better reconstruct highly truncated people, and incorporating auxiliary inputs to improve 3D pose estimation accuracy. It also reduces the dependency on 3D datasets such as H36M that have restrictive licenses. We also use our method to introduce new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body poses. In order to obtain such high quality 3D pseudo-annotations, inspired by progress in internal learning, we introduce Exemplar Fine-Tuning (EFT). EFT combines the re-projection accuracy of fitting methods like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network. We show that EFT produces 3D annotations that result in better downstream performance and are qualitatively preferable in an extensive human-based assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助刻苦的媚颜采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
渔渔完成签到 ,获得积分10
2秒前
烽火残心完成签到,获得积分10
2秒前
2秒前
顾年完成签到,获得积分10
2秒前
浅尝离白完成签到,获得积分0
3秒前
ddboys1009完成签到,获得积分10
3秒前
3秒前
YunE完成签到,获得积分10
3秒前
4秒前
慕青应助谭慧采纳,获得10
4秒前
4秒前
sky完成签到,获得积分10
4秒前
美好斓发布了新的文献求助10
4秒前
顺顺利利完成签到,获得积分10
4秒前
Dding发布了新的文献求助10
5秒前
5秒前
昏睡的妙梦完成签到,获得积分10
5秒前
笑点低向雁完成签到,获得积分10
5秒前
自愈合完成签到,获得积分10
6秒前
Ellery完成签到,获得积分10
6秒前
顾矜应助sxpab采纳,获得10
6秒前
6秒前
7秒前
无奈的小虾米完成签到,获得积分10
8秒前
8秒前
画舫发布了新的文献求助10
8秒前
8秒前
glaciersu完成签到,获得积分10
8秒前
Sparks完成签到,获得积分10
8秒前
陈佳琦发布了新的文献求助10
9秒前
wen完成签到,获得积分10
9秒前
酥酥脆完成签到,获得积分10
9秒前
JUN发布了新的文献求助10
9秒前
斯文败类应助yangyujie25采纳,获得10
9秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297