Retinal age gap as a predictive biomarker for mortality risk.

医学 生物标志物 内科学 队列 比例危险模型 视网膜 危险系数 队列研究 接收机工作特性 置信区间 逻辑回归 风险因素 优势比 糖尿病 人口
作者
Zhuoting Zhu,Danli Shi,Peng Guankai,Zachary Tan,Xianwen Shang,Wenyi Hu,Huan Liao,Xueli Zhang,Yu Huang,Honghua Yu,Wei Meng,Wei Wang,B Zongyuan Ge,Xiaohong Yang,Mingguang He
出处
期刊:British Journal of Ophthalmology [BMJ]
标识
DOI:10.1136/bjophthalmol-2021-319807
摘要

To develop a deep learning (DL) model that predicts age from fundus images (retinal age) and to investigate the association between retinal age gap (retinal age predicted by DL model minus chronological age) and mortality risk.A total of 80 169 fundus images taken from 46 969 participants in the UK Biobank with reasonable quality were included in this study. Of these, 19 200 fundus images from 11 052 participants without prior medical history at the baseline examination were used to train and validate the DL model for age prediction using fivefold cross-validation. A total of 35 913 of the remaining 35 917 participants had available mortality data and were used to investigate the association between retinal age gap and mortality.The DL model achieved a strong correlation of 0.81 (p<0·001) between retinal age and chronological age, and an overall mean absolute error of 3.55 years. Cox regression models showed that each 1 year increase in the retinal age gap was associated with a 2% increase in risk of all-cause mortality (hazard ratio (HR)=1.02, 95% CI 1.00 to 1.03, p=0.020) and a 3% increase in risk of cause-specific mortality attributable to non-cardiovascular and non-cancer disease (HR=1.03, 95% CI 1.00 to 1.05, p=0.041) after multivariable adjustments. No significant association was identified between retinal age gap and cardiovascular- or cancer-related mortality.Our findings indicate that retinal age gap might be a potential biomarker of ageing that is closely related to risk of mortality, implying the potential of retinal image as a screening tool for risk stratification and delivery of tailored interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助zjq采纳,获得10
刚刚
科研通AI2S应助666采纳,获得10
2秒前
3秒前
敦敦发布了新的文献求助10
3秒前
MoriZhang发布了新的文献求助10
4秒前
4秒前
4秒前
善学以致用应助yh采纳,获得10
5秒前
小哥门关注了科研通微信公众号
6秒前
寒冷的迎梦完成签到,获得积分10
7秒前
甜筒完成签到,获得积分10
8秒前
健壮的怜烟应助万物安生采纳,获得20
8秒前
健壮的怜烟应助万物安生采纳,获得20
8秒前
科研小白发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
NexusExplorer应助XLX采纳,获得10
9秒前
一介书生发布了新的文献求助10
10秒前
酷波er应助ranranran采纳,获得10
11秒前
英俊的铭应助科研废物采纳,获得10
11秒前
yly发布了新的文献求助30
12秒前
12秒前
田様应助塵埃采纳,获得10
13秒前
wu8577应助塵埃采纳,获得10
13秒前
所所应助塵埃采纳,获得10
13秒前
王紫发布了新的文献求助10
14秒前
666完成签到,获得积分10
14秒前
15秒前
夏沫完成签到,获得积分10
16秒前
MoriZhang完成签到,获得积分10
16秒前
yh完成签到,获得积分20
16秒前
石楠完成签到,获得积分10
17秒前
keke完成签到,获得积分10
18秒前
兴奋海雪完成签到,获得积分10
19秒前
yh发布了新的文献求助10
20秒前
21秒前
Rondab应助早起采纳,获得10
21秒前
所所应助仔wang采纳,获得10
22秒前
田様应助2224536采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931