Brain Age Prediction With Improved Least Squares Twin SVR

支持向量机 过度拟合 结构风险最小化 计算机科学 人工智能 最小二乘支持向量机 计算 回归 机器学习 交叉验证 数学优化 算法 数学 人工神经网络 统计
作者
M. A. Ganaie,M. Tanveer,Iman Beheshti
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1661-1669 被引量:24
标识
DOI:10.1109/jbhi.2022.3147524
摘要

Alzheimer's disease (AD) is the prevalent form of dementia and shares many aspects with the aging pattern of the abnormal brain. Machine learning models like support vector regression (SVR) based models have been successfully employed in the estimation of brain age. However, SVR is computationally inefficient than twin support vector machine based models. Hence, different twin support vector machine based models like twin SVR (TSVR), ε-TSVR, and Lagrangian TSVR (LTSVR) models have been used for the regression problems. ε-TSVR and LTSVR models seek a pair of ε-insensitive proximal planes for generation of end regressor. However, SVR and TSVR based models have several drawbacks- i) SVR model is computationally inefficient compared to the TSVR based models. ii) Twin SVM based models involve the computation of matrix inverse which is intractable in real world scenario's. iii) Both TSVR and LTSVR models are based on empirical risk minimization principle and hence may be prone to overfitting. iv) TSVR and LTSVR assume that the matrices appearing in their formulation are positive definite which may not be satisfied in real world scenario's. To overcome these issues, we formulate improved least squares twin support vector regression (ILSTSVR). The proposed ILSTSVR modifies the TSVR by replacing the inequality constraints with the equality constraints and minimizes the slack variables using squares of L2 norm instead of L1. Also, we introduce a different Lagrangian function to avoid the computation of matrix inverses. We evaluated the proposed ILSTSVR model on the subjects including cognitively healthy, mild cognitive impairment and Alzheimer's disease for brain-age estimation. Experimental evaluation and statistical tests demonstrate the efficiency of the proposed ILSTSVR model for brain-age prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欧贤书发布了新的文献求助10
1秒前
天天快乐应助Gryphon采纳,获得10
2秒前
粗犷的冷霜完成签到,获得积分10
3秒前
小马发布了新的文献求助10
4秒前
Sunny完成签到,获得积分10
4秒前
小满发布了新的文献求助10
4秒前
5秒前
6秒前
科目三应助董秋白采纳,获得10
6秒前
8秒前
asdfzxcv应助陶醉的梦露采纳,获得10
9秒前
9秒前
olivia发布了新的文献求助10
10秒前
11秒前
桃子发布了新的文献求助10
15秒前
Wudifairy完成签到,获得积分10
15秒前
xbx1991完成签到,获得积分10
16秒前
小满完成签到,获得积分10
17秒前
17秒前
18秒前
eryu25发布了新的文献求助10
19秒前
19秒前
欢喜的小天鹅完成签到 ,获得积分10
19秒前
传奇3应助HOMO采纳,获得10
20秒前
开心小狗完成签到,获得积分10
20秒前
ihuu发布了新的文献求助10
20秒前
guyankuan完成签到,获得积分20
21秒前
CuO发布了新的文献求助10
23秒前
股价发布了新的文献求助10
23秒前
guyankuan发布了新的文献求助10
23秒前
田字格发布了新的文献求助10
24秒前
suer玉完成签到,获得积分10
25秒前
25秒前
xin发布了新的文献求助10
25秒前
25秒前
25秒前
传奇3应助钦点小黑采纳,获得10
26秒前
Zhao完成签到 ,获得积分10
26秒前
鼠鼠完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704