Brain Age Prediction With Improved Least Squares Twin SVR

支持向量机 过度拟合 结构风险最小化 计算机科学 人工智能 最小二乘支持向量机 计算 回归 机器学习 交叉验证 数学优化 算法 数学 人工神经网络 统计
作者
M. A. Ganaie,M. Tanveer,Iman Beheshti
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1661-1669 被引量:23
标识
DOI:10.1109/jbhi.2022.3147524
摘要

Alzheimer's disease (AD) is the prevalent form of dementia and shares many aspects with the aging pattern of the abnormal brain. Machine learning models like support vector regression (SVR) based models have been successfully employed in the estimation of brain age. However, SVR is computationally inefficient than twin support vector machine based models. Hence, different twin support vector machine based models like twin SVR (TSVR), ε-TSVR, and Lagrangian TSVR (LTSVR) models have been used for the regression problems. ε-TSVR and LTSVR models seek a pair of ε-insensitive proximal planes for generation of end regressor. However, SVR and TSVR based models have several drawbacks- i) SVR model is computationally inefficient compared to the TSVR based models. ii) Twin SVM based models involve the computation of matrix inverse which is intractable in real world scenario's. iii) Both TSVR and LTSVR models are based on empirical risk minimization principle and hence may be prone to overfitting. iv) TSVR and LTSVR assume that the matrices appearing in their formulation are positive definite which may not be satisfied in real world scenario's. To overcome these issues, we formulate improved least squares twin support vector regression (ILSTSVR). The proposed ILSTSVR modifies the TSVR by replacing the inequality constraints with the equality constraints and minimizes the slack variables using squares of L2 norm instead of L1. Also, we introduce a different Lagrangian function to avoid the computation of matrix inverses. We evaluated the proposed ILSTSVR model on the subjects including cognitively healthy, mild cognitive impairment and Alzheimer's disease for brain-age estimation. Experimental evaluation and statistical tests demonstrate the efficiency of the proposed ILSTSVR model for brain-age prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李二狗完成签到,获得积分10
刚刚
哈哈镜阿姐完成签到,获得积分10
刚刚
Melody完成签到,获得积分10
刚刚
123发布了新的文献求助10
刚刚
pbj完成签到,获得积分10
刚刚
健壮念寒发布了新的文献求助10
刚刚
思源应助gongyh采纳,获得10
1秒前
DELI完成签到 ,获得积分10
1秒前
lala完成签到,获得积分10
1秒前
Lucas应助yangzhang采纳,获得10
1秒前
无可无不可完成签到,获得积分10
1秒前
小鹿斑斑比完成签到,获得积分10
1秒前
SciGPT应助小高同学采纳,获得10
2秒前
鞠晓蕾完成签到,获得积分10
2秒前
胡晓平完成签到,获得积分10
2秒前
天天快乐应助屯屯鱼采纳,获得10
2秒前
eason完成签到 ,获得积分10
2秒前
csu_zs完成签到,获得积分10
2秒前
aaaaaa完成签到,获得积分10
2秒前
amigo发布了新的文献求助10
3秒前
ddstty完成签到,获得积分10
3秒前
Ava应助迷人耗子精采纳,获得10
3秒前
陈子完成签到,获得积分20
4秒前
tanshy完成签到,获得积分10
4秒前
和春住完成签到,获得积分10
4秒前
msy完成签到,获得积分10
4秒前
4秒前
5秒前
PZL完成签到,获得积分10
6秒前
柒_l完成签到,获得积分10
7秒前
可以的完成签到,获得积分10
7秒前
7秒前
深圳人在北京完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
CodeCraft应助小鱼儿采纳,获得10
7秒前
huba完成签到,获得积分10
7秒前
kk完成签到,获得积分10
7秒前
如意绾绾发布了新的文献求助30
8秒前
清爽大山完成签到,获得积分10
8秒前
泡芙完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259