Brain Age Prediction With Improved Least Squares Twin SVR

支持向量机 过度拟合 结构风险最小化 计算机科学 人工智能 最小二乘支持向量机 计算 回归 机器学习 交叉验证 数学优化 算法 数学 人工神经网络 统计
作者
M. A. Ganaie,M. Tanveer,Iman Beheshti
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1661-1669 被引量:15
标识
DOI:10.1109/jbhi.2022.3147524
摘要

Alzheimer's disease (AD) is the prevalent form of dementia and shares many aspects with the aging pattern of the abnormal brain. Machine learning models like support vector regression (SVR) based models have been successfully employed in the estimation of brain age. However, SVR is computationally inefficient than twin support vector machine based models. Hence, different twin support vector machine based models like twin SVR (TSVR), ε-TSVR, and Lagrangian TSVR (LTSVR) models have been used for the regression problems. ε-TSVR and LTSVR models seek a pair of ε-insensitive proximal planes for generation of end regressor. However, SVR and TSVR based models have several drawbacks- i) SVR model is computationally inefficient compared to the TSVR based models. ii) Twin SVM based models involve the computation of matrix inverse which is intractable in real world scenario's. iii) Both TSVR and LTSVR models are based on empirical risk minimization principle and hence may be prone to overfitting. iv) TSVR and LTSVR assume that the matrices appearing in their formulation are positive definite which may not be satisfied in real world scenario's. To overcome these issues, we formulate improved least squares twin support vector regression (ILSTSVR). The proposed ILSTSVR modifies the TSVR by replacing the inequality constraints with the equality constraints and minimizes the slack variables using squares of L2 norm instead of L1. Also, we introduce a different Lagrangian function to avoid the computation of matrix inverses. We evaluated the proposed ILSTSVR model on the subjects including cognitively healthy, mild cognitive impairment and Alzheimer's disease for brain-age estimation. Experimental evaluation and statistical tests demonstrate the efficiency of the proposed ILSTSVR model for brain-age prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路冰安发布了新的文献求助10
1秒前
顾矜应助南卡采纳,获得10
1秒前
拼搏的二哈完成签到,获得积分20
2秒前
3秒前
4秒前
Dee发布了新的文献求助10
4秒前
linjie完成签到,获得积分10
5秒前
yhengdyheng完成签到,获得积分10
5秒前
coconut发布了新的文献求助10
5秒前
田様应助Wei Qin采纳,获得10
7秒前
7秒前
8秒前
医痞子发布了新的文献求助10
8秒前
9秒前
天天快乐应助youuuu采纳,获得10
10秒前
1735发布了新的文献求助10
10秒前
10秒前
11秒前
雪山飞龙发布了新的文献求助10
11秒前
xjhhh完成签到,获得积分10
11秒前
12秒前
12秒前
尔东发布了新的文献求助10
12秒前
13秒前
大有阳光应助min20210429采纳,获得10
14秒前
春华秋实发布了新的文献求助10
14秒前
li发布了新的文献求助30
15秒前
15秒前
不甜完成签到,获得积分10
15秒前
刘YF发布了新的文献求助10
15秒前
西子阳发布了新的文献求助10
16秒前
linjie发布了新的文献求助10
17秒前
踏实的酸奶完成签到,获得积分10
18秒前
aaa发布了新的文献求助10
18秒前
香蕉半邪发布了新的文献求助10
18秒前
MUZI完成签到,获得积分10
19秒前
20秒前
暗月皇完成签到,获得积分10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905