PVP-induced synergistic engineering of interlayer, self-doping, active surface and vacancies in VS4 for enhancing magnesium ions storage and durability

材料科学 插层(化学) 化学工程 动力学 储能 电解质 阴极 耐久性 无机化学 电极 复合材料 化学 物理化学 冶金 物理 量子力学 工程类 功率(物理)
作者
Shiqi Ding,Xin Dai,Zhenjiang Li,Chunsheng Wang,Alan Meng,Lei Wang,Guicun Li,Jianfeng Huang,Shaoxiang Li
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:47: 211-222 被引量:58
标识
DOI:10.1016/j.ensm.2022.02.023
摘要

Magnesium ions batteries (MIBs) provide great potential for the safety and large-scale energy storage, however, its inherent drawbacks, such as the sluggish kinetics, poor cycling life and lower specific capacities of cathode limit their practical application. Herein, PVP is innovatively incorporated with VS4 and induced synergistic engineering, including the enlarged interchain spacing, V3+ self-doping, rich sulfur vacancies and the selectively exposing active surface of (020) facets, which results in the fast kinetics of co-intercalation of Mg2+ and MgCl+, electrolyte infiltration, more active sites exposure, and the strain/stress relaxation during insertion/extraction process for the high stability of structure. Therefore, this novel design of PVP-VS4 exhibits long-term cycling stability (80% capacity retention at 5000 mA g−1 after 1500 cycles) and exceptional high-rate capability (140 mAh g−1 at 50 mA g−1 with 45 mAh g−1 at 5000 mA g−1). The fast reaction kinetics is further confirmed by galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) computations. In addition, the energy storage mechanism and desirable pseudocapacitive behaviors are elucidated through series of ex situ investigations and pesudocapaticance-like contribution analysis. And PVP-VS4 delivers the higher anti-self-discharge capability cause by PVP incorporation. PVP-induced synergistic engineering opens up a new opportunity for designing a variety of effective intercalation host materials for next-generation energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五岳三鸟完成签到,获得积分10
刚刚
芒果发布了新的文献求助10
1秒前
1秒前
1秒前
徐徐完成签到,获得积分10
1秒前
1秒前
在水一方应助研友_nv2r4n采纳,获得10
1秒前
星辰大海应助紫色方块采纳,获得10
2秒前
研友_n2KQ2Z完成签到,获得积分10
2秒前
科研通AI5应助梦里见陈情采纳,获得30
2秒前
小马甲应助Ll采纳,获得10
2秒前
深情安青应助昵称采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
无悔呀发布了新的文献求助10
4秒前
龙歪歪发布了新的文献求助10
4秒前
wanci应助66采纳,获得10
5秒前
易伊澤发布了新的文献求助10
5秒前
徐徐发布了新的文献求助10
5秒前
5秒前
科研小民工应助laihama采纳,获得30
5秒前
xdf发布了新的文献求助10
6秒前
动听导师发布了新的文献求助10
6秒前
6秒前
莫之白完成签到,获得积分10
6秒前
阳光莲小蓬完成签到,获得积分20
7秒前
芒果完成签到,获得积分10
7秒前
请叫我风吹麦浪应助九川采纳,获得10
8秒前
8秒前
yanyan完成签到,获得积分10
8秒前
Raine完成签到,获得积分10
8秒前
CCL应助啦某某采纳,获得20
8秒前
喵叽完成签到,获得积分10
8秒前
9秒前
大方的小海豚完成签到,获得积分10
9秒前
lanxixi完成签到,获得积分20
9秒前
9秒前
李小汁完成签到 ,获得积分10
9秒前
zkc关闭了zkc文献求助
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762