亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iAFPs-EnC-GA: Identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach

人工智能 支持向量机 计算机科学 特征选择 机器学习 模式识别(心理学) 特征向量 特征(语言学) 数据挖掘 语言学 哲学
作者
Ashfaq Ahmad,Shahid Akbar,Muhammad Tahir,Maqsood Hayat,Farman Ali
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:222: 104516-104516 被引量:51
标识
DOI:10.1016/j.chemolab.2022.104516
摘要

Fungal infections have become a serious health concern for human beings worldwide. Fungal infections usually occur when the invading fungus appear on a particular part of the body and become hard for the human immune system to resist. The existing antifungal treatments are considered inappropriate because of their severe side effects. With the rapid growth of this chronic disease across the world, an accurate prediction model for fungal infections has become a challenging task for scientists. To cope with these issues, several prediction methods have been established for antifungal peptides. However, due to the limited and unsatisfactory performance of these methods, it is still highly indispensable to develop an effective and reliable model of antifungal peptides. In this study, we present an intelligent learning approach for the accurate prediction of antifungal peptides. The sequential and evolutionary features are explored by three promising descriptors namely conjoint triad feature (CTF), Pseudo-position specific scoring matrix (PsePSSM), and Position-specific scoring matrix-Discrete wavelet transform (PSSM-DWT). Moreover, the extracted vectors of the encoding methods are then fused to get multi-perspective descriptors representing both sequential and evolutionary features. In addition, to reduce the size of the multi-information vector and to eradicate noisy and irrelevant descriptors, we applied minimum redundancy and maximum relevance (mRMR) based feature selection to choose the optimal feature set. In the next step, the selected feature vector is evaluated via four different machine learning models, i.e. Fuzzy K-nearest neighbor (FKNN), Random Forest (RF),k-nearest neighbor (KNN), and Support Vector Machine (SVM). In addition, the predicted labels of the individual learning algorithms are then provided to the genetic algorithm to form an ensemble classifier to further boost the prediction results. Furthermore, the SHAP and LIME methods were used to interpret the contribution of features to model predictions. Our proposed iAFPs-EnC-GA model achieved a higher prediction accuracy of 97.81% and 93.92% using training and independent datasets, respectively. Which is ∼4% higher than existing models. It is suggested that the “iAFPs-EnC-GA” model will be a valuable tool for scientists and might play a key role in drug development and academic research. The source code and all datasets are publicly available at https://github.com/farmanit335/iAFPs-EnC-GA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqq完成签到,获得积分0
19秒前
垚祎完成签到 ,获得积分10
25秒前
29秒前
31秒前
Zcccjy完成签到 ,获得积分10
43秒前
47秒前
小迪完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
平常远山发布了新的文献求助10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
小黄发布了新的文献求助30
1分钟前
你求我一下完成签到,获得积分20
1分钟前
大个应助平常远山采纳,获得10
1分钟前
zxy发布了新的文献求助10
1分钟前
鳗鱼厉发布了新的文献求助10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
Jasper应助橙子采纳,获得10
2分钟前
CJW完成签到 ,获得积分10
2分钟前
堆起的石头完成签到,获得积分10
2分钟前
子平完成签到 ,获得积分10
2分钟前
鳗鱼厉发布了新的文献求助10
2分钟前
zxy应助MIMI采纳,获得10
2分钟前
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
3分钟前
萝卜完成签到 ,获得积分10
3分钟前
3分钟前
前前前世发布了新的文献求助10
3分钟前
3分钟前
3分钟前
你能行发布了新的文献求助10
3分钟前
斯文的苡完成签到,获得积分10
4分钟前
4分钟前
橙子发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505155
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864