亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Targeted proteomics improves cardiovascular risk prediction in secondary prevention

医学 队列 内科学 C反应蛋白 心肌梗塞 队列研究 曲线下面积 肿瘤科 炎症
作者
Nick S. Nurmohamed,João Pereira,Renate M. Hoogeveen,Jeffrey Kroon,Jordan M. Kraaijenhof,Farahnaz Waissi,Nathalie Timmerman,Michiel J. Bom,Imo E. Hoefer,Paul Knaapen,Alberico L. Catapano,Wolfgang Köenig,Dominique P.V. de Kleijn,Frank L.J. Visseren,Evgeni Levin,Erik S.G. Stroes
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (16): 1569-1577 被引量:68
标识
DOI:10.1093/eurheartj/ehac055
摘要

Abstract Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. Methods and results Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
xx发布了新的文献求助10
15秒前
我是老大应助有人采纳,获得30
16秒前
黑嘿嘿嘿嘿嘿关注了科研通微信公众号
21秒前
24秒前
今后应助xx采纳,获得10
24秒前
小欢发布了新的文献求助10
29秒前
37秒前
小欢完成签到,获得积分10
38秒前
wl完成签到 ,获得积分10
49秒前
whatever应助枯藤老柳树采纳,获得30
50秒前
乐乐应助科研通管家采纳,获得10
52秒前
FashionBoy应助科研通管家采纳,获得10
52秒前
1分钟前
pathway发布了新的文献求助10
1分钟前
CodeCraft应助pathway采纳,获得10
1分钟前
枯藤老柳树完成签到,获得积分10
1分钟前
yaoyaoyao完成签到 ,获得积分10
1分钟前
1分钟前
汤汤完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
疯狂喵完成签到 ,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
3分钟前
3分钟前
seren_liu发布了新的文献求助10
3分钟前
张张完成签到 ,获得积分10
4分钟前
ldysaber完成签到,获得积分10
4分钟前
ma完成签到 ,获得积分10
4分钟前
xiangwang完成签到 ,获得积分10
4分钟前
想不出来完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
小凯完成签到 ,获得积分10
5分钟前
5分钟前
chxxxxx发布了新的文献求助30
5分钟前
franklin发布了新的文献求助10
5分钟前
万能图书馆应助chxxxxx采纳,获得10
5分钟前
微笑语柳完成签到,获得积分10
5分钟前
NexusExplorer应助franklin采纳,获得10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989