Targeted proteomics improves cardiovascular risk prediction in secondary prevention

医学 队列 内科学 C反应蛋白 心肌梗塞 队列研究 曲线下面积 肿瘤科 炎症
作者
Nick S. Nurmohamed,João Pereira,Renate M. Hoogeveen,Jeffrey Kroon,Jordan M Kraaijenhof,Farahnaz Waissi,Nathalie Timmerman,Michiel J. Bom,Imo E. Hoefer,Paul Knaapen,Alberico L. Catapano,Wolfgang Köenig,Dominique P.V. de Kleijn,Frank L.J. Visseren,Evgeni Levin,Erik S.G. Stroes
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (16): 1569-1577 被引量:98
标识
DOI:10.1093/eurheartj/ehac055
摘要

Abstract Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. Methods and results Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘宗洋完成签到,获得积分20
1秒前
英姑应助lulu采纳,获得10
1秒前
英勇的大有应助lxj采纳,获得10
1秒前
1秒前
孙元应助02采纳,获得10
1秒前
在水一方应助02采纳,获得10
1秒前
充电宝应助小管采纳,获得10
2秒前
Jasmine发布了新的文献求助10
3秒前
flyzhang20完成签到,获得积分10
3秒前
彭于晏应助黎明森采纳,获得10
3秒前
3秒前
kiminonawa应助自然代亦采纳,获得10
4秒前
君莫笑完成签到,获得积分10
4秒前
4秒前
4秒前
222666完成签到 ,获得积分10
5秒前
orixero应助河清海晏采纳,获得10
5秒前
Wuuuu完成签到 ,获得积分10
5秒前
半分糖完成签到 ,获得积分10
7秒前
木子完成签到,获得积分10
7秒前
小二郎应助sqz_df采纳,获得10
8秒前
登山逐浪完成签到,获得积分10
9秒前
香蕉觅云应助阳光的冷珍采纳,获得10
9秒前
abcdefg完成签到,获得积分10
10秒前
科目三应助满意的夜柳采纳,获得10
10秒前
zhuxd发布了新的文献求助10
10秒前
11秒前
王倩的老公完成签到 ,获得积分10
11秒前
多多指教完成签到,获得积分10
11秒前
zhang发布了新的文献求助10
11秒前
张晓晓完成签到,获得积分20
11秒前
营养快线yykx完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
liviawong完成签到,获得积分10
13秒前
嘻嘻完成签到,获得积分10
13秒前
打打应助健康的犀牛采纳,获得10
13秒前
英姑应助SANDY采纳,获得10
13秒前
Jasper应助和谐谷蕊采纳,获得10
14秒前
迅捷完成签到 ,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388