Targeted proteomics improves cardiovascular risk prediction in secondary prevention

医学 队列 内科学 C反应蛋白 心肌梗塞 队列研究 曲线下面积 肿瘤科 炎症
作者
Nick S. Nurmohamed,João Pereira,Renate M. Hoogeveen,Jeffrey Kroon,Jordan M Kraaijenhof,Farahnaz Waissi,Nathalie Timmerman,Michiel J. Bom,Imo E. Hoefer,Paul Knaapen,Alberico L. Catapano,Wolfgang Köenig,Dominique P.V. de Kleijn,Frank L.J. Visseren,Evgeni Levin,Erik S.G. Stroes
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (16): 1569-1577 被引量:98
标识
DOI:10.1093/eurheartj/ehac055
摘要

Abstract Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. Methods and results Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可乐完成签到 ,获得积分10
刚刚
1秒前
leeSongha完成签到 ,获得积分10
1秒前
2秒前
LEle发布了新的文献求助10
2秒前
情怀应助科研小白采纳,获得10
3秒前
4秒前
Jack祺完成签到 ,获得积分10
5秒前
5秒前
小二郎应助Darling采纳,获得10
5秒前
周至发布了新的文献求助30
6秒前
二枫忆桑完成签到,获得积分10
6秒前
别叫我吃饭饭饭完成签到 ,获得积分10
6秒前
6秒前
唐文硕发布了新的文献求助10
6秒前
6秒前
郭郭发布了新的文献求助10
7秒前
小马甲应助zzzpf采纳,获得10
8秒前
10秒前
华仔应助CXJ采纳,获得10
10秒前
wangzilu发布了新的文献求助50
10秒前
郭亮完成签到 ,获得积分20
10秒前
ghx发布了新的文献求助10
12秒前
顾矜应助ballball233采纳,获得10
12秒前
wang11完成签到,获得积分10
13秒前
初空月儿完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助30
14秒前
爆米花应助管夜白采纳,获得10
14秒前
寒冷寻桃发布了新的文献求助10
15秒前
xcltzh2517完成签到,获得积分10
16秒前
16秒前
大个应助唐文硕采纳,获得10
16秒前
pig120完成签到 ,获得积分10
17秒前
lllllll完成签到,获得积分10
17秒前
星辰大海应助shiyongkang1采纳,获得20
20秒前
善学以致用应助多情如容采纳,获得10
20秒前
唐文硕完成签到,获得积分10
21秒前
qzz完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932