清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Targeted proteomics improves cardiovascular risk prediction in secondary prevention

医学 队列 内科学 C反应蛋白 心肌梗塞 队列研究 曲线下面积 肿瘤科 炎症
作者
Nick S. Nurmohamed,João Pereira,Renate M. Hoogeveen,Jeffrey Kroon,Jordan M Kraaijenhof,Farahnaz Waissi,Nathalie Timmerman,Michiel J. Bom,Imo E. Hoefer,Paul Knaapen,Alberico L. Catapano,Wolfgang Köenig,Dominique P.V. de Kleijn,Frank L.J. Visseren,Evgeni Levin,Erik S.G. Stroes
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (16): 1569-1577 被引量:98
标识
DOI:10.1093/eurheartj/ehac055
摘要

Abstract Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. Methods and results Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
CC发布了新的文献求助30
16秒前
20秒前
lesliechan发布了新的文献求助10
26秒前
傅。完成签到 ,获得积分10
31秒前
希望天下0贩的0应助半晴采纳,获得10
39秒前
今后应助半晴采纳,获得10
39秒前
45秒前
57秒前
TT0622发布了新的文献求助10
1分钟前
TT0622完成签到,获得积分10
1分钟前
陶醉的小海豚完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
半晴发布了新的文献求助10
1分钟前
2分钟前
2分钟前
佳佳发布了新的文献求助10
2分钟前
萝卜青菜完成签到 ,获得积分10
2分钟前
无花果应助冷静大米采纳,获得10
2分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
冷静大米发布了新的文献求助10
2分钟前
善学以致用应助冷静大米采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
沉默念瑶完成签到 ,获得积分10
4分钟前
4分钟前
lesliechan完成签到,获得积分10
4分钟前
科研通AI6应助大熊采纳,获得10
5分钟前
大模型应助Rui采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651112
求助须知:如何正确求助?哪些是违规求助? 4783297
关于积分的说明 15053122
捐赠科研通 4809844
什么是DOI,文献DOI怎么找? 2572683
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687