材料科学
光电探测器
光探测
光电子学
响应度
紫外线
半导体
光电流
作者
Xuxuan Yang,Lihang Qu,Feng Gao,Yunxia Hu,Huan Yu,Yunxia Wang,Mengqi Cui,Yunxiao Zhang,Zhendong Fu,Yuewu Huang,Wei Feng,Bin Li,PingAn Hu
标识
DOI:10.1021/acsami.1c22448
摘要
Two-dimensional (2D) bismuth oxychalcogenide (Bi2O2X, X refers to S, Se, and Te) is one type of rising semiconductor with excellent electrical transport properties, high photoresponse, and good air stability. However, the research on 2D Bi2O2S is limited. In this work, ultrathin Bi2O2S nanosheets are synthesized by a facile and eco-friendly chemical synthesis method at room temperature. The thickness and lateral sizes are 2-4 nm and 20-40 nm, respectively. The 2D ultrathin Bi2O2S nanosheets have a broad absorption spectrum from ultraviolet (UV) to near-infrared (NIR). Photoelectrochemical (PEC) photodetectors based on 2D Bi2O2S nanosheets are fabricated by a simple drop-casting method. The 2D Bi2O2S-based PEC photodetectors show excellent photodetection performance with a broad photoresponse spectrum from 365 to 850 nm, a high responsivity of 13.0 mA/W, ultrafast response times of 10/45 ms, and good long-term stability at a bias voltage of 0.6 V, which are superior to most 2D material-based PEC photodetectors. Further, the 2D Bi2O2S PEC photodetector can function as a high-performance self-powered broadband photodetector. Moreover, the photoresponse performance can be effectively tuned by the concentration and the kind of electrolyte. Our results demonstrate that 2D Bi2O2S nanosheets hold great promise for application in high-performance optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI