Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network

聚合物 计算机科学 生物系统 图形 弹性网正则化 子空间拓扑 降维 人工智能 材料科学 卷积神经网络 代表(政治) 算法 理论计算机科学 特征选择 复合材料 政治 生物 法学 政治学
作者
Jaehong Park,Youngseon Shim,Ryan S. Hsi,Aravind Rammohan,Sushmit Goyal,Mun‐Bo Shim,Changwook Jeong,Dae Sin Kim
出处
期刊:ACS Polymers Au [American Chemical Society]
卷期号:2 (4): 213-222 被引量:34
标识
DOI:10.1021/acspolymersau.1c00050
摘要

We present machine learning models for the prediction of thermal and mechanical properties of polymers based on the graph convolutional network (GCN). GCN-based models provide reliable prediction performances for the glass transition temperature (Tg), melting temperature (Tm), density (ρ), and elastic modulus (E) with substantial dependence on the dataset, which is the best for Tg (R2 ∼ 0.9) and worst for E (R2 ∼ 0.5). It is found that the GCN representations for polymers provide prediction performances of their properties comparable to the popular extended-connectivity circular fingerprint (ECFP) representation. Notably, the GCN combined with the neural network regression (GCN-NN) slightly outperforms the ECFP. It is investigated how the GCN captures important structural features of polymers to learn their properties. Using the dimensionality reduction, we demonstrate that the polymers are organized in the principal subspace of the GCN representation spaces with respect to the backbone rigidity. The organization in the representation space adaptively changes with the training and through the NN layers, which might facilitate a subsequent prediction of target properties based on the relationships between the structure and the property. The GCN models are found to provide an advantage to automatically extract a backbone rigidity, strongly correlated with Tg, as well as a potential transferability to predict other properties associated with a backbone rigidity. Our results indicate both the capability and limitations of the GCN in learning to describe polymer systems depending on the property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯123完成签到,获得积分10
2秒前
cccccc发布了新的文献求助20
2秒前
222发布了新的文献求助10
3秒前
随便起个名完成签到 ,获得积分10
3秒前
fenmiao完成签到,获得积分10
4秒前
新新新新新发顶刊完成签到 ,获得积分10
5秒前
9秒前
yangjiali完成签到 ,获得积分10
9秒前
噗噗完成签到,获得积分20
10秒前
敏敏自然醒哇关注了科研通微信公众号
10秒前
爆米花应助儒雅的夏山采纳,获得10
11秒前
pluto应助Patrick采纳,获得100
11秒前
12秒前
12秒前
烟雨醉巷完成签到 ,获得积分10
13秒前
明ming到此一游完成签到 ,获得积分10
13秒前
13秒前
guangweiyan完成签到 ,获得积分10
14秒前
Orange应助222采纳,获得10
14秒前
符雁完成签到,获得积分10
15秒前
16秒前
Dadonnggua发布了新的文献求助30
16秒前
orixero应助onlyan采纳,获得10
16秒前
老实巴交发布了新的文献求助10
16秒前
小二郎应助科研鸟采纳,获得10
17秒前
云馨完成签到,获得积分10
18秒前
xy发布了新的文献求助10
18秒前
符雁发布了新的文献求助10
19秒前
flysky120完成签到,获得积分10
19秒前
19秒前
鸣笛应助CG采纳,获得20
22秒前
19950728发布了新的文献求助10
23秒前
24秒前
24秒前
yaya完成签到 ,获得积分10
26秒前
28秒前
28秒前
28秒前
29秒前
kkk完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429