Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network

聚合物 计算机科学 生物系统 图形 弹性网正则化 子空间拓扑 降维 人工智能 材料科学 卷积神经网络 代表(政治) 算法 理论计算机科学 特征选择 政治 政治学 法学 复合材料 生物
作者
Jaehong Park,Youngseon Shim,Ryan S. Hsi,Aravind Rammohan,Sushmit Goyal,Mun‐Bo Shim,Changwook Jeong,Dae Sin Kim
出处
期刊:ACS Polymers Au [American Chemical Society]
卷期号:2 (4): 213-222 被引量:34
标识
DOI:10.1021/acspolymersau.1c00050
摘要

We present machine learning models for the prediction of thermal and mechanical properties of polymers based on the graph convolutional network (GCN). GCN-based models provide reliable prediction performances for the glass transition temperature (Tg), melting temperature (Tm), density (ρ), and elastic modulus (E) with substantial dependence on the dataset, which is the best for Tg (R2 ∼ 0.9) and worst for E (R2 ∼ 0.5). It is found that the GCN representations for polymers provide prediction performances of their properties comparable to the popular extended-connectivity circular fingerprint (ECFP) representation. Notably, the GCN combined with the neural network regression (GCN-NN) slightly outperforms the ECFP. It is investigated how the GCN captures important structural features of polymers to learn their properties. Using the dimensionality reduction, we demonstrate that the polymers are organized in the principal subspace of the GCN representation spaces with respect to the backbone rigidity. The organization in the representation space adaptively changes with the training and through the NN layers, which might facilitate a subsequent prediction of target properties based on the relationships between the structure and the property. The GCN models are found to provide an advantage to automatically extract a backbone rigidity, strongly correlated with Tg, as well as a potential transferability to predict other properties associated with a backbone rigidity. Our results indicate both the capability and limitations of the GCN in learning to describe polymer systems depending on the property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuoping完成签到,获得积分10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助jry采纳,获得10
2秒前
2秒前
3秒前
谢言一完成签到,获得积分10
5秒前
5秒前
cc发布了新的文献求助10
6秒前
林瀚铅完成签到,获得积分10
6秒前
啊凡完成签到 ,获得积分10
8秒前
9秒前
10秒前
hhc发布了新的文献求助10
10秒前
Ava应助QXS采纳,获得10
12秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
17秒前
17秒前
hhc完成签到,获得积分10
18秒前
mmyhn发布了新的文献求助200
18秒前
taodage发布了新的文献求助10
21秒前
科研通AI2S应助研友_Lmbz1n采纳,获得10
22秒前
开朗世立发布了新的文献求助10
22秒前
22秒前
22秒前
nipanpan发布了新的文献求助10
22秒前
温暖冬日发布了新的文献求助30
23秒前
天天快乐应助zyz采纳,获得10
23秒前
23秒前
楚天正阔发布了新的文献求助10
24秒前
李爱国应助momo采纳,获得10
24秒前
西西发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195