Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network

聚合物 计算机科学 生物系统 图形 弹性网正则化 子空间拓扑 降维 人工智能 材料科学 卷积神经网络 代表(政治) 算法 理论计算机科学 特征选择 政治 政治学 法学 复合材料 生物
作者
Jaehong Park,Youngseon Shim,Ryan S. Hsi,Aravind Rammohan,Sushmit Goyal,Mun‐Bo Shim,Changwook Jeong,Dae Sin Kim
出处
期刊:ACS Polymers Au [American Chemical Society]
卷期号:2 (4): 213-222 被引量:34
标识
DOI:10.1021/acspolymersau.1c00050
摘要

We present machine learning models for the prediction of thermal and mechanical properties of polymers based on the graph convolutional network (GCN). GCN-based models provide reliable prediction performances for the glass transition temperature (Tg), melting temperature (Tm), density (ρ), and elastic modulus (E) with substantial dependence on the dataset, which is the best for Tg (R2 ∼ 0.9) and worst for E (R2 ∼ 0.5). It is found that the GCN representations for polymers provide prediction performances of their properties comparable to the popular extended-connectivity circular fingerprint (ECFP) representation. Notably, the GCN combined with the neural network regression (GCN-NN) slightly outperforms the ECFP. It is investigated how the GCN captures important structural features of polymers to learn their properties. Using the dimensionality reduction, we demonstrate that the polymers are organized in the principal subspace of the GCN representation spaces with respect to the backbone rigidity. The organization in the representation space adaptively changes with the training and through the NN layers, which might facilitate a subsequent prediction of target properties based on the relationships between the structure and the property. The GCN models are found to provide an advantage to automatically extract a backbone rigidity, strongly correlated with Tg, as well as a potential transferability to predict other properties associated with a backbone rigidity. Our results indicate both the capability and limitations of the GCN in learning to describe polymer systems depending on the property.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的斑马完成签到,获得积分10
1秒前
1秒前
完美世界应助Windycityguy采纳,获得10
1秒前
深情安青应助starlx0813采纳,获得10
2秒前
2秒前
义气丹雪应助细腻听白采纳,获得100
2秒前
Re发布了新的文献求助10
2秒前
科研通AI6.1应助热情千风采纳,获得10
3秒前
雨柏完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
7秒前
orixero应助年轻就要气盛采纳,获得10
8秒前
violet完成签到,获得积分20
9秒前
充电宝应助健忘的雨安采纳,获得10
11秒前
dfggg发布了新的文献求助10
11秒前
饱满的问丝完成签到,获得积分10
12秒前
13秒前
大水完成签到 ,获得积分10
14秒前
14秒前
Akira完成签到,获得积分20
15秒前
隐形曼青应助是ok耶采纳,获得10
16秒前
17秒前
17秒前
11111发布了新的文献求助20
18秒前
大水发布了新的文献求助10
20秒前
20秒前
小蘑菇应助保持科研热情采纳,获得10
20秒前
所所应助蓦然采纳,获得10
21秒前
21秒前
爱科研的小蜗啊完成签到,获得积分10
22秒前
从容梦山发布了新的文献求助10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
24秒前
luo完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848