化学
环糊精
热重分析
对映体
吸附
共价键
相(物质)
共价有机骨架
手性柱色谱法
手性(物理)
色谱法
高效液相色谱法
化学工程
有机化学
物理
工程类
量子力学
手征对称破缺
Nambu–Jona Lasinio模型
夸克
作者
Yunchao Zheng,Meijun Wan,Jingqiu Zhou,Xuemei Dai,Honglin Yang,Zhining Xia,Lujun Wang
标识
DOI:10.1016/j.chroma.2021.462731
摘要
As a welcomed porous material, covalent organic frameworks (COFs) have many advantages and are widely used in various aspects. Particularly, COFs have aroused great attentions of scientists in chromatographic separation field due to their outstanding advantages, such as high stability, large specific surface area and multiple voids. However, endowing COFs with chirality to construct chiral stationary phase (CSP) function is still facing many challenges. Here, we firstly prepared a β-cyclodextrin (β-CD) and covalent organic framework functional silica CSP named as COF@CD@SiO2 by one-pot method to perform high performance liquid chromatography (HPLC) chiral separation. The morphology and structure of the synthesized stationary phase were investigated by a variety of characterization methods including Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption experiment, powder X-ray diffraction (XRD) and elemental analysis (EA). The prepared stationary phase realized fast separation of six enantiomers in a short time. The separation mechanism was mainly ascribed to the inclusion complexation of β-cyclodextrin and the mutli-interaction sites from COFs material. In conclusion, the prepared chiral column can be used to achieve fast separation of enantiomers with good stability and reproducibility. These results can open new avenue for using chiral COFs in liquid chromatographic separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI