已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang⋆,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:167: 195-202 被引量:21
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助吃死你啦啦采纳,获得10
2秒前
点点点完成签到 ,获得积分10
6秒前
清秀小霸王完成签到,获得积分10
6秒前
7秒前
丁昂霄完成签到 ,获得积分10
8秒前
嘁嘁嘁完成签到,获得积分10
9秒前
HH完成签到,获得积分10
11秒前
雅士白农学家完成签到,获得积分10
11秒前
兜兜风gf完成签到 ,获得积分10
12秒前
称心的冰安完成签到,获得积分10
12秒前
yinlao完成签到,获得积分10
13秒前
Vintoe完成签到 ,获得积分10
13秒前
听曲散步完成签到,获得积分10
13秒前
13秒前
明亮的幻灵完成签到,获得积分10
15秒前
lijunliang完成签到 ,获得积分10
15秒前
七号在野闪闪完成签到 ,获得积分10
16秒前
rayc应助卡皮巴拉桑采纳,获得10
16秒前
所所应助实物图采纳,获得10
17秒前
晨晨完成签到 ,获得积分10
17秒前
Carole完成签到 ,获得积分10
18秒前
Akim应助雅士白农学家采纳,获得10
18秒前
韦鑫龙完成签到,获得积分10
18秒前
18秒前
半斤完成签到 ,获得积分10
19秒前
21秒前
nav完成签到 ,获得积分10
21秒前
Tohka完成签到 ,获得积分10
21秒前
RRR232完成签到 ,获得积分10
21秒前
22秒前
大方听白完成签到 ,获得积分10
22秒前
123完成签到 ,获得积分10
24秒前
聪聪great发布了新的文献求助10
25秒前
01259完成签到 ,获得积分10
26秒前
嘁嘁嘁发布了新的文献求助10
26秒前
27秒前
azon完成签到 ,获得积分10
28秒前
韦老虎完成签到,获得积分20
29秒前
聪聪great完成签到,获得积分20
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504