Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:167: 195-202 被引量:16
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的曲奇完成签到 ,获得积分10
刚刚
Robertchen完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
CHENHL完成签到,获得积分10
3秒前
NexusExplorer应助积极向上采纳,获得10
4秒前
嘉丽的后花园完成签到,获得积分10
4秒前
思源应助歪比八不采纳,获得10
5秒前
ShuangWeng应助热情的达采纳,获得10
5秒前
大个应助诚心的电话采纳,获得10
6秒前
7秒前
万能图书馆应助win采纳,获得10
7秒前
carol7298完成签到 ,获得积分10
8秒前
10秒前
小吴搞科研完成签到,获得积分10
11秒前
12秒前
小九发布了新的文献求助10
12秒前
无限的易云关注了科研通微信公众号
12秒前
12秒前
12秒前
哎呀完成签到,获得积分10
12秒前
13秒前
nczpf2010发布了新的文献求助10
15秒前
15秒前
慕青应助wang5945采纳,获得10
15秒前
闻歌发布了新的文献求助10
15秒前
1257应助鸽子爱好者采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得30
17秒前
jaslek发布了新的文献求助10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得30
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
丰富的鞅应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023