Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang⋆,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:167: 195-202 被引量:21
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ww发布了新的文献求助10
1秒前
高兴的羊发布了新的文献求助10
2秒前
大海发布了新的文献求助10
2秒前
了了发布了新的文献求助10
3秒前
kidney发布了新的文献求助10
3秒前
小二郎应助天真千易采纳,获得10
4秒前
Lucas应助天真千易采纳,获得10
4秒前
Hello应助天真千易采纳,获得10
4秒前
小二郎应助天真千易采纳,获得10
4秒前
4秒前
搜集达人应助天真千易采纳,获得10
4秒前
万能图书馆应助天真千易采纳,获得10
4秒前
小二郎应助雪白摇伽采纳,获得10
4秒前
善学以致用应助天真千易采纳,获得10
4秒前
4秒前
脑洞疼应助天真千易采纳,获得10
4秒前
含蓄鸡翅完成签到,获得积分10
5秒前
漂亮幻然发布了新的文献求助10
5秒前
redamancy完成签到 ,获得积分10
5秒前
NULI发布了新的文献求助30
5秒前
木婉清发布了新的文献求助10
6秒前
cheire完成签到,获得积分10
6秒前
纳尼发布了新的文献求助10
6秒前
Bluebulu完成签到,获得积分10
7秒前
满意往事完成签到,获得积分10
8秒前
CodeCraft应助Morton采纳,获得100
9秒前
10秒前
Ray完成签到,获得积分10
10秒前
斯文败类应助天真千易采纳,获得10
10秒前
星辰大海应助天真千易采纳,获得10
10秒前
华仔应助天真千易采纳,获得10
10秒前
小蘑菇应助天真千易采纳,获得10
10秒前
在水一方应助天真千易采纳,获得10
10秒前
小二郎应助天真千易采纳,获得10
10秒前
领导范儿应助天真千易采纳,获得10
10秒前
科目三应助天真千易采纳,获得10
11秒前
11秒前
无花果应助天真千易采纳,获得10
11秒前
打打应助天真千易采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675