Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang⋆,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:167: 195-202 被引量:19
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助金蕊采纳,获得30
1秒前
乐乐应助xian林采纳,获得10
1秒前
彪壮的机器猫完成签到 ,获得积分10
2秒前
威武绿真完成签到,获得积分10
3秒前
李子维完成签到 ,获得积分10
3秒前
半栀完成签到,获得积分10
3秒前
陈怀祚发布了新的文献求助10
3秒前
岸芷汀兰完成签到,获得积分10
4秒前
沉静的红酒完成签到,获得积分10
4秒前
4秒前
牛牛123完成签到 ,获得积分10
6秒前
Paris应助大大怪采纳,获得10
6秒前
6秒前
情怀应助周杰伦采纳,获得10
8秒前
Kristin完成签到,获得积分10
9秒前
9秒前
六78910完成签到,获得积分10
9秒前
9秒前
mou发布了新的文献求助10
10秒前
曼夭非夭完成签到,获得积分10
10秒前
呵呵完成签到,获得积分10
12秒前
wm发布了新的文献求助10
12秒前
Claudplz完成签到,获得积分10
13秒前
HHHWJ完成签到 ,获得积分10
13秒前
EmmaLin完成签到,获得积分10
14秒前
cyx完成签到,获得积分20
14秒前
奋斗的不言完成签到,获得积分10
15秒前
nino完成签到,获得积分0
16秒前
千筹完成签到,获得积分10
16秒前
Wmin完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
Leslie完成签到,获得积分10
17秒前
catch完成签到,获得积分10
17秒前
mou完成签到,获得积分10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
19秒前
思源应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703