Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang⋆,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:167: 195-202 被引量:20
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助runer采纳,获得10
1秒前
LBY发布了新的文献求助10
3秒前
恩雁发布了新的文献求助10
4秒前
共享精神应助连仁兄采纳,获得10
6秒前
JamesPei应助连仁兄采纳,获得10
6秒前
wgglegg完成签到,获得积分10
7秒前
慕青应助du采纳,获得10
8秒前
9秒前
9秒前
runer完成签到,获得积分10
12秒前
化学之星发布了新的文献求助10
13秒前
runer发布了新的文献求助10
14秒前
可靠的战斗机完成签到,获得积分10
15秒前
sci-wangmumu完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
金嘻嘻完成签到,获得积分10
19秒前
20秒前
烟花应助曾经冰露采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
苹果犀牛发布了新的文献求助10
23秒前
张轶完成签到,获得积分10
23秒前
24秒前
24秒前
温婉的白秋发布了新的文献求助100
25秒前
烟花应助伶俐问薇采纳,获得10
25秒前
zwp完成签到,获得积分10
25秒前
JerryZ发布了新的文献求助10
26秒前
du发布了新的文献求助10
26秒前
hesurui发布了新的文献求助10
27秒前
27秒前
Yangaaa发布了新的文献求助10
27秒前
qiaojunys发布了新的文献求助10
28秒前
标致乐双发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624785
求助须知:如何正确求助?哪些是违规求助? 4024076
关于积分的说明 12456301
捐赠科研通 3708763
什么是DOI,文献DOI怎么找? 2045646
邀请新用户注册赠送积分活动 1077637
科研通“疑难数据库(出版商)”最低求助积分说明 960142