Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer

医学 接收机工作特性 癌胚抗原 结直肠癌 试验装置 癌症 肿瘤科 淋巴结 内科学 人工智能 计算生物学 计算机科学 生物
作者
Jiaojiao Zhao,Han Wang,Yin Zhang⋆,Rui Wang,Qin Liu,Jie Li,Xue Li,Hanyu Huang,Jie Zhang,Zhaoping Zeng,Jun Zhang,Yi Zhang,Fanxin Zeng
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:167: 195-202 被引量:20
标识
DOI:10.1016/j.radonc.2021.12.031
摘要

The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC.A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman' correlation, and the genes correlated with DPL features were used to transcriptomic analysis.The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features.This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
117完成签到,获得积分10
4秒前
Damon完成签到 ,获得积分10
4秒前
logic22完成签到,获得积分10
4秒前
萤火虫完成签到,获得积分10
5秒前
5秒前
6秒前
Wuli蕊亲故发布了新的文献求助10
7秒前
优秀剑愁发布了新的文献求助10
7秒前
九方嘉许应助杨启军采纳,获得10
8秒前
清脆安南完成签到 ,获得积分10
9秒前
minghanl完成签到,获得积分10
10秒前
10秒前
杨召关注了科研通微信公众号
11秒前
AGuang发布了新的文献求助10
11秒前
猪猪侠完成签到,获得积分10
12秒前
12秒前
canxwh完成签到,获得积分10
13秒前
dddd完成签到 ,获得积分10
13秒前
L_MD完成签到,获得积分10
14秒前
15秒前
yck1027完成签到,获得积分10
15秒前
猪猪侠发布了新的文献求助10
16秒前
紧张的世德完成签到,获得积分10
16秒前
16秒前
冬菇拉米发布了新的文献求助50
17秒前
AGuang完成签到,获得积分10
17秒前
顺利的曼寒完成签到 ,获得积分10
17秒前
18秒前
英俊的铭应助从容的子轩采纳,获得10
18秒前
今天我学了吗完成签到,获得积分10
18秒前
白斯特发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
21秒前
友好的颦发布了新的文献求助30
21秒前
22秒前
李健的小迷弟应助DSH采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470