Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review

农药残留 表面增强拉曼光谱 分析物 拉曼光谱 化学 杀虫剂 纳米技术 人类健康 检出限 环境化学 分析化学(期刊) 色谱法 材料科学 拉曼散射 物理 光学 环境卫生 生物 医学 农学
作者
Meng−Lei Xu,Yu Gao,Xiao Han,Bing Zhao
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:65 (32): 6719-6726 被引量:311
标识
DOI:10.1021/acs.jafc.7b02504
摘要

Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ola完成签到,获得积分10
7秒前
cdercder应助yh采纳,获得30
7秒前
8秒前
8秒前
小王发布了新的社区帖子
8秒前
normankasimodo完成签到,获得积分10
8秒前
雀跃完成签到 ,获得积分10
10秒前
10秒前
www完成签到,获得积分10
12秒前
梧桐发布了新的文献求助10
13秒前
wzx发布了新的文献求助10
13秒前
shuangma完成签到,获得积分10
14秒前
顾矜应助ddd采纳,获得10
15秒前
pass发布了新的文献求助10
16秒前
大花卷完成签到,获得积分10
17秒前
海鸥别叫了完成签到 ,获得积分10
22秒前
muzi完成签到,获得积分10
23秒前
田様应助阳光的豁采纳,获得10
23秒前
SciGPT应助梧桐采纳,获得10
24秒前
坐等时光看轻自己完成签到,获得积分10
33秒前
香辣鸡腿堡完成签到,获得积分10
34秒前
binyao2024完成签到,获得积分10
35秒前
35秒前
36秒前
bkagyin应助冷静烤鸡采纳,获得10
37秒前
tpl完成签到,获得积分10
37秒前
38秒前
123发布了新的文献求助10
39秒前
沐垣完成签到,获得积分10
40秒前
42秒前
43秒前
阳光的豁发布了新的文献求助10
43秒前
充电宝应助123采纳,获得10
46秒前
xx完成签到 ,获得积分10
50秒前
大胆电源完成签到,获得积分10
51秒前
123完成签到,获得积分10
54秒前
55秒前
研友_LN3xyn发布了新的文献求助10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717