Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

化学信息学 G蛋白偶联受体 药物发现 计算生物学 虚拟筛选 药物设计 化学空间 生物信息学 鉴定(生物学) 计算机科学 生物 数据科学 受体 生物化学 植物
作者
Shaherin Basith,Minghua Cui,Stephani Joy Y. Macalino,Jongmi Park,Nina Abigail B. Clavio,Soosung Kang,Sun Choi
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:9 被引量:93
标识
DOI:10.3389/fphar.2018.00128
摘要

The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the ‘golden age for GPCR structural biology.’ Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest towards the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小梁完成签到,获得积分10
刚刚
1秒前
LXXXXXX完成签到,获得积分10
2秒前
赘婿应助xhtw采纳,获得10
2秒前
逝水无痕完成签到,获得积分10
2秒前
碧蓝的翠曼完成签到,获得积分10
2秒前
今后应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
3秒前
1351567822应助科研通管家采纳,获得30
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
彭于晏应助动人的莛采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
hbh发布了新的文献求助10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
1351567822应助科研通管家采纳,获得30
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研鬼才完成签到,获得积分10
5秒前
5秒前
6秒前
欢呼妙菱发布了新的文献求助10
6秒前
呆萌寻琴完成签到,获得积分10
6秒前
7秒前
swzzaf发布了新的文献求助10
7秒前
852应助皮皮帅采纳,获得10
7秒前
ergou发布了新的文献求助20
7秒前
7秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328514
求助须知:如何正确求助?哪些是违规求助? 2958523
关于积分的说明 8590790
捐赠科研通 2636774
什么是DOI,文献DOI怎么找? 1443196
科研通“疑难数据库(出版商)”最低求助积分说明 668574
邀请新用户注册赠送积分活动 655842