Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

化学信息学 G蛋白偶联受体 药物发现 计算生物学 虚拟筛选 药物设计 化学空间 生物信息学 鉴定(生物学) 计算机科学 生物 数据科学 受体 生物化学 植物
作者
Shaherin Basith,Minghua Cui,Stephani Joy Y. Macalino,Jongmi Park,Nina Abigail B. Clavio,Soosung Kang,Sun Choi
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:9 被引量:93
标识
DOI:10.3389/fphar.2018.00128
摘要

The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the ‘golden age for GPCR structural biology.’ Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest towards the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
刚刚
Maestro_S完成签到,获得积分0
刚刚
volzzz发布了新的文献求助10
刚刚
wgglegg完成签到,获得积分10
刚刚
科研通AI5应助小胖鱼采纳,获得10
刚刚
酷波er应助黄超采纳,获得10
刚刚
刚刚
大智若愚啊完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
彬彬发布了新的文献求助10
1秒前
健壮丹妗完成签到 ,获得积分10
1秒前
Orange应助铸一字错采纳,获得10
1秒前
1秒前
Accept应助阿烨采纳,获得10
3秒前
欧阳小枫发布了新的文献求助10
4秒前
5秒前
Heidi完成签到 ,获得积分10
5秒前
见雨鱼发布了新的文献求助10
5秒前
学术扛把子完成签到 ,获得积分10
5秒前
Lucas应助陈某某采纳,获得10
5秒前
尊敬的钥匙完成签到,获得积分10
6秒前
7秒前
7秒前
赘婿应助无情的白桃采纳,获得10
7秒前
习习应助zhu96114748采纳,获得10
8秒前
英姑应助韭菜盒子采纳,获得10
8秒前
jbzmm完成签到 ,获得积分10
8秒前
36456657应助虚安采纳,获得10
9秒前
张真狗完成签到,获得积分10
9秒前
zz完成签到,获得积分10
9秒前
深情安青应助xxx采纳,获得10
9秒前
9秒前
yqf完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
乐乐应助燕尔蓝采纳,获得10
11秒前
JamesPei应助柔弱煎饼采纳,获得30
11秒前
习习应助甜甜的向卉采纳,获得10
11秒前
xunxunmimi发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740