Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method

空化 格子Boltzmann方法 机械 多相流 润湿 喷嘴 物理 边值问题 接触角 气泡 热力学 量子力学
作者
Eslam Ezzatneshan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:29 (11) 被引量:61
标识
DOI:10.1063/1.4990876
摘要

Cavitating flow through the orifice is numerically solved by implementation of the lattice Boltzmann method. The pseudo-potential single-component multiphase Shan-Chen model is used to resolve inter-particle interactions and phase change between the liquid and its vapor. The effect of surface wettability on the cavity formation and shape is studied by imposing an appropriate wall boundary condition for the contact angle between the liquid-vapor interface and the solid surface. Efficiency of the numerical approach presented is examined by computing the cavitation inception, growth, and collapse for internal cavitating flows over a sack-wall obstacle placed inside a channel and through a convergent-divergent nozzle section. The results obtained demonstrate that hydrophobic walls act as surface nuclei and contribute to the process of cavitation inception even at high cavitation numbers. In contrast, the solid wall with hydrophilic properties shows no contribution to the onset of cavitation in the geometries studied. High values for the flow velocity corresponding to low cavitation numbers are needed to observe the cavitation inception over the geometries studied with the hydrophilic solid wall. The study shows that the present computational technique based on the implementation of the lattice Boltzmann method with the Shan-Chen model employed is robust and efficient to predict the cavitation phenomena by considering surface wettability effects and also accurate enough for computing the cavitating flow properties at different conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
刚刚
无情墨镜完成签到,获得积分10
刚刚
1秒前
1秒前
李健应助科研废物采纳,获得10
1秒前
FIN发布了新的文献求助500
3秒前
3秒前
lmz发布了新的文献求助10
3秒前
alunying发布了新的文献求助20
4秒前
Iris发布了新的文献求助10
4秒前
4秒前
90发布了新的文献求助10
5秒前
Criminology34应助无情墨镜采纳,获得10
5秒前
科研通AI6应助芝士采纳,获得10
6秒前
fff完成签到,获得积分10
6秒前
乐观文龙完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
LikeS关注了科研通微信公众号
9秒前
9秒前
mucheng发布了新的文献求助10
10秒前
悲哀藏在现实中完成签到,获得积分10
10秒前
10秒前
天天快乐应助wang采纳,获得10
10秒前
1812完成签到,获得积分10
10秒前
科研通AI6应助1234采纳,获得10
10秒前
赵闯完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
bdJ发布了新的文献求助10
12秒前
充电宝应助gdl采纳,获得10
12秒前
12秒前
隐形曼青应助lmz采纳,获得10
13秒前
百事可爱完成签到 ,获得积分10
13秒前
wanghuan完成签到,获得积分10
15秒前
16秒前
幸运星发布了新的文献求助10
16秒前
蓝天发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683