A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

环境科学 可降水量 水蒸气 气象学 对流层 遥感 卫星 降水 大气(单位) 大气科学 气候学
作者
Liangke Huang,Weiping Jiang,Lilong Liu,Hua Chen,Shirong Ye
出处
期刊:Journal of Geodesy 卷期号:93 (2): 159-176 被引量:33
标识
DOI:10.1007/s00190-018-1148-9
摘要

In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, $$T_\mathrm{m}$$ , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing $$T_\mathrm{m} $$ models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that $$T_\mathrm{m} $$ is highly correlated with both latitude and altitude. In this study, a new global grid empirical $$T_\mathrm{m} $$ model, named as GGTm, was established by a sliding window algorithm using global gridded $$T_\mathrm{m} $$ data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded $$T_\mathrm{m} $$ data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded $$T_\mathrm{m} $$ data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean $$\hbox {RMS}_{\mathrm{PWV}} $$ and $$\hbox {RMS}_{\mathrm{PWV}} /\hbox {PWV}$$ values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate $$T_\mathrm{m} $$ value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明盈发布了新的文献求助10
刚刚
1秒前
幸福大白发布了新的文献求助10
2秒前
2秒前
monika_zhu发布了新的文献求助10
4秒前
4秒前
5秒前
nhjiebio发布了新的文献求助10
5秒前
6秒前
星辰大海应助真洋子哈采纳,获得10
7秒前
诸葛核桃发布了新的文献求助30
8秒前
8秒前
9秒前
团子完成签到,获得积分10
9秒前
shinysparrow应助Magali采纳,获得200
9秒前
chenjun7080发布了新的文献求助10
9秒前
10秒前
Shirley完成签到 ,获得积分10
10秒前
11秒前
!hau发布了新的文献求助10
12秒前
13秒前
13秒前
南浔发布了新的文献求助10
14秒前
佳2发布了新的文献求助10
14秒前
Hh发布了新的文献求助10
14秒前
flq完成签到,获得积分10
15秒前
充电宝应助第一步催化B采纳,获得10
15秒前
梦幻完成签到 ,获得积分10
15秒前
新斯的明的明完成签到 ,获得积分10
17秒前
ezvsnoc完成签到,获得积分10
17秒前
!hau完成签到,获得积分10
19秒前
19秒前
ggn发布了新的文献求助10
20秒前
20秒前
Hh完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
Arvilzzz完成签到,获得积分10
22秒前
龚幻梦发布了新的文献求助10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849