已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones

医学 冲击波碎石术 碎石术 纹理(宇宙学) 肾结石 人工智能 外科 图像(数学) 计算机科学
作者
Manoj Mannil,Jochen von Spiczak,Thomas Hermanns,Cédric Poyet,Hatem Alkadhi,Christian D. Fankhauser
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:200 (4): 829-836 被引量:46
标识
DOI:10.1016/j.juro.2018.04.059
摘要

We sought to determine the predictive value of 3-dimensional texture analysis of computerized tomography images for successful shock wave lithotripsy in patients with kidney stones.Patients with preoperative and postoperative computerized tomography, previously untreated kidney stones and a stone diameter of 5 to 20 mm were included in study. A total of 224, 3-dimensional texture analysis features of each kidney stone, including attenuation measured in HU and the clinical variables body mass index, initial stone size and skin to stone distance, were analyzed using 5 commonly used machine learning models. The data set was split in a ratio of 2/3 for model derivation and 1/3 for validation. Machine learning based predictions of shock wave lithotripsy success in the validation cohort were evaluated by calculating sensitivity, specificity and the AUC.For shock wave lithotripsy success the 3 clinical variables body mass index, initial stone size and skin to stone distance showed an AUC of 0.68, 0.58 and 0.63, respectively. No predictive value was found for HU. A random forest classifier using 3, 3-dimensional texture analysis features had an AUC of 0.79. By combining these 3 features with clinical variables discriminatory accuracy improved further with an AUC of 0.85 for 3-dimensional texture analysis features and skin to stone distance, an AUC of 0.8 for 3-dimensional texture analysis features and body mass index, and an AUC of 0.81 for 3-dimensional texture analysis and stone size.This preliminary study indicates that the clinical variables body mass index, initial stone size and skin to stone distance show limited value to predict shock wave lithotripsy success while stone HU values were not predictive. Select 3-dimensional texture analysis features identified by machine learning provided incremental accuracy to predict the success of shock wave lithotripsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
John完成签到 ,获得积分10
1秒前
bkagyin应助guard采纳,获得10
2秒前
可萨利亚应助Agreenhand采纳,获得10
2秒前
lalala发布了新的文献求助10
4秒前
4秒前
qunqingqing完成签到,获得积分10
4秒前
天元神尊完成签到 ,获得积分10
5秒前
6秒前
薛薛@发布了新的文献求助30
6秒前
善学以致用应助www1234采纳,获得10
7秒前
qunqingqing发布了新的文献求助30
9秒前
Tequila发布了新的文献求助10
9秒前
猫蒲发布了新的文献求助10
10秒前
研友_ZzwoR8发布了新的文献求助10
10秒前
小蘑菇完成签到,获得积分10
11秒前
13秒前
lwg完成签到,获得积分10
14秒前
我是老大应助春江采纳,获得10
17秒前
17秒前
阿飞发布了新的文献求助10
18秒前
Smiles完成签到,获得积分10
20秒前
烟花应助猫蒲采纳,获得10
20秒前
zhenzheng完成签到 ,获得积分10
21秒前
薛薛@完成签到,获得积分10
22秒前
科研达人发布了新的文献求助30
22秒前
22秒前
balancesy完成签到,获得积分10
22秒前
陈江河完成签到,获得积分20
24秒前
执着的un琪完成签到 ,获得积分10
24秒前
infinity完成签到 ,获得积分10
26秒前
颜沛文发布了新的文献求助10
27秒前
27秒前
28秒前
Luckovo完成签到 ,获得积分10
29秒前
zkk完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
guard发布了新的文献求助10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801528
关于积分的说明 7845329
捐赠科研通 2459096
什么是DOI,文献DOI怎么找? 1308989
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727