增广拉格朗日法
可分离空间
有界函数
拉格朗日乘数
序列(生物学)
数学优化
缩小
功能(生物学)
财产(哲学)
数学
应用数学
惩罚法
计算机科学
数学分析
哲学
遗传学
认识论
进化生物学
生物
作者
Zhongming Wu,Min Li,David Z.W. Wang,Deren Han
标识
DOI:10.1142/s0217595917500300
摘要
In this paper, we propose a symmetric alternating method of multipliers for minimizing the sum of two nonconvex functions with linear constraints, which contains the classic alternating direction method of multipliers in the algorithm framework. Based on the powerful Kurdyka–Łojasiewicz property, and under some assumptions about the penalty parameter and objective function, we prove that each bounded sequence generated by the proposed method globally converges to a critical point of the augmented Lagrangian function associated with the given problem. Moreover, we report some preliminary numerical results on solving [Formula: see text] regularized sparsity optimization and nonconvex feasibility problems to indicate the feasibility and effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI