General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities

催化作用 合理设计 石墨烯 电化学 过渡金属 部分 组合化学 材料科学 纳米技术 密度泛函理论 Atom(片上系统) 化学 计算机科学 无机化学 计算化学 物理化学 嵌入式系统 有机化学 电极 立体化学
作者
Huilong Fei,Juncai Dong,Yexin Feng,Christopher S. Allen,Chengzhang Wan,Boris Volosskiy,Mufan Li,Zipeng Zhao,Yiliu Wang,Hongtao Sun,Pengfei An,Wenxing Chen,Zhiying Guo,Chain Lee,Dongliang Chen,Imran Shakir,Mingjie Liu,Tiandou Hu,Yadong Li,Angus I. Kirkland,Xiangfeng Duan,Yu Huang
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:1 (1): 63-72 被引量:1681
标识
DOI:10.1038/s41929-017-0008-y
摘要

Single-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical prediction of MN4C4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities. Atomically dispersed metal catalysts are of increasing importance in many catalytic processes, but clear structural identification is challenging. Here, a general synthesis of metal (nickel, iron and cobalt) single-atom catalysts on nitrogen-doped graphene allows the authors to identify a common structure and furthermore correlate structure with electrocatalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kxy完成签到,获得积分10
1秒前
1秒前
婧婧完成签到 ,获得积分10
1秒前
2秒前
3秒前
左友铭完成签到 ,获得积分10
3秒前
sweetbearm应助通~采纳,获得10
3秒前
AKLIZE完成签到,获得积分10
3秒前
刘大妮完成签到,获得积分10
4秒前
clean完成签到,获得积分20
5秒前
Lucas发布了新的文献求助10
5秒前
5秒前
朴实以松发布了新的文献求助10
5秒前
感谢橘子转发科研通微信,获得积分50
5秒前
围炉煮茶完成签到,获得积分10
6秒前
6秒前
云锋发布了新的文献求助10
7秒前
兴奋的问旋应助务实盼海采纳,获得10
7秒前
李秋静发布了新的文献求助10
7秒前
7秒前
无花果应助cookie采纳,获得10
8秒前
8秒前
斯文败类应助阳尧采纳,获得10
8秒前
9秒前
9秒前
abjz完成签到,获得积分10
9秒前
三千弱水为君饮完成签到,获得积分10
10秒前
10秒前
cata完成签到,获得积分10
10秒前
感谢79转发科研通微信,获得积分50
10秒前
10秒前
troubadourelf发布了新的文献求助10
11秒前
frank发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
感谢超帅冬易转发科研通微信,获得积分50
14秒前
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794