Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective

主成分分析 多元统计 层次聚类 数据挖掘 透视图(图形) 计算机科学 相关性 多元分析 典型相关 函数主成分分析 联想(心理学) 统计分析 星团(航天器) 机器学习 人工智能 数学 统计 聚类分析 心理学 几何学 程序设计语言 心理治疗师
作者
Daniel Granato,Jânio Sousa Santos,Graziela Bragueto Escher,Bruno Luís Ferreira,Rubén M. Maggio
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:72: 83-90 被引量:866
标识
DOI:10.1016/j.tifs.2017.12.006
摘要

The development of statistical software has enabled food scientists to perform a wide variety of mathematical/statistical analyses and solve problems. Therefore, not only sophisticated analytical methods but also the application of multivariate statistical methods have increased considerably. Herein, principal component analysis (PCA) and hierarchical cluster analysis (HCA) are the most widely used tools to explore similarities and hidden patterns among samples where relationship on data and grouping are until unclear. Usually, larger chemical data sets, bioactive compounds and functional properties are the target of these methodologies. In this article, we criticize these methods when correlation analysis should be calculated and results analyzed. The use of PCA and HCA in food chemistry studies has increased because the results are easy to interpret and discuss. However, their indiscriminate use to assess the association between bioactive compounds and in vitro functional properties is criticized as they provide a qualitative view of the data. When appropriate, one should bear in mind that the correlation between the content of chemical compounds and bioactivity could be duly discussed using correlation coefficients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666发布了新的文献求助10
刚刚
Crystal完成签到,获得积分10
刚刚
刚刚
Zhangll发布了新的文献求助10
1秒前
log完成签到,获得积分10
1秒前
王灰灰1完成签到,获得积分10
1秒前
妤懿完成签到 ,获得积分10
2秒前
2秒前
2秒前
舒心半梦发布了新的文献求助10
3秒前
艾扎克发布了新的文献求助10
3秒前
含糊的寇完成签到,获得积分10
3秒前
充电宝应助CYC采纳,获得10
5秒前
搜集达人应助小包包采纳,获得10
5秒前
6秒前
SciGPT应助cnulee采纳,获得10
6秒前
6秒前
6秒前
CodeCraft应助小刘医生采纳,获得10
6秒前
领导范儿应助范啦啦啦采纳,获得30
6秒前
7秒前
8秒前
nmamtf发布了新的文献求助10
8秒前
震动的沛山应助一一采纳,获得10
9秒前
满意的伊发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
xia发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
阿宋发布了新的文献求助10
12秒前
LMJ发布了新的文献求助10
12秒前
13秒前
13秒前
llb完成签到,获得积分10
13秒前
哈哈哈发布了新的文献求助10
14秒前
潇笑发布了新的文献求助10
14秒前
geyuanhong完成签到,获得积分10
15秒前
17秒前
啊啊啊啊发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091