Mapping croplands, cropping patterns, and crop types using MODIS time-series data

种植 归一化差异植被指数 遥感 中分辨率成像光谱仪 环境科学 作物 土地覆盖 地理 土地利用 农学 农业 林业 叶面积指数 卫星 考古 土木工程 工程类 航空航天工程 生物
作者
Yaoliang Chen,Dengsheng Lu,Emilio F. Morán,Mateus Batistella,Luciano Vieira Dutra,I. D. Sanches,Ramon Felipe Bicudo da Silva,Jingfeng Huang,A. J. B. Luiz,Maria Antonia Falcão de Oliveira
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:69: 133-147 被引量:124
标识
DOI:10.1016/j.jag.2018.03.005
摘要

The importance of mapping regional and global cropland distribution in timely ways has been recognized, but separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil. The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types. Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respectively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88, respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands, their cropping patterns and crop types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
JSM发布了新的文献求助300
5秒前
Bright24发布了新的文献求助10
5秒前
七七完成签到,获得积分10
5秒前
PrayOne完成签到 ,获得积分10
7秒前
咕噜发布了新的文献求助10
7秒前
阳光访波发布了新的文献求助10
8秒前
传奇3应助galaxy采纳,获得10
8秒前
脑洞疼应助感动书芹采纳,获得10
9秒前
勤奋的小伙完成签到,获得积分10
9秒前
11秒前
11秒前
YANYAN完成签到,获得积分20
11秒前
斯文败类应助萝卜采纳,获得10
12秒前
xxxxyyyy1完成签到 ,获得积分10
13秒前
lxy完成签到,获得积分10
13秒前
杨家辉发布了新的文献求助10
13秒前
wanci应助俏皮芷蕊采纳,获得10
14秒前
昏睡的铭完成签到,获得积分10
14秒前
王旭阳发布了新的文献求助10
15秒前
15秒前
18秒前
18秒前
Ava应助loner采纳,获得30
19秒前
承序完成签到,获得积分10
20秒前
科研通AI2S应助Spongeisla采纳,获得10
22秒前
鲤鱼幼晴应助lidianji122采纳,获得20
22秒前
小龙发布了新的文献求助10
22秒前
YamDaamCaa应助CyrusSo524采纳,获得30
23秒前
灵梦柠檬酸完成签到,获得积分10
24秒前
HelenZ完成签到,获得积分10
25秒前
LING发布了新的文献求助10
26秒前
呼呼呼完成签到,获得积分10
27秒前
27秒前
宋jh完成签到,获得积分10
27秒前
sssss发布了新的文献求助20
28秒前
su完成签到,获得积分10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388