Prior sensitivity analysis in default Bayesian structural equation modeling.

先验概率 结构方程建模 贝叶斯概率 灵敏度(控制系统) 计算机科学 贝叶斯定理 计量经济学 统计 人工智能 机器学习 数学 工程类 电子工程
作者
Sara van Erp,Joris Mulder,Daniel L. Oberski
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:23 (2): 363-388 被引量:122
标识
DOI:10.1037/met0000162
摘要

Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models while solving some of the issues often encountered in classical maximum likelihood (ML) estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error (MSE), bias, coverage rates, and quantiles of the estimates.In this paper, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors, with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature and all code for conducting the prior sensitivity analysis is made available in the online supplemental material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABLAT发布了新的文献求助10
刚刚
研友_莫笑旋完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
光伏半导体吱吱吱关注了科研通微信公众号
2秒前
樂樂完成签到 ,获得积分10
2秒前
慕青应助云宝采纳,获得10
3秒前
Chuu♡发布了新的文献求助10
3秒前
sophia完成签到,获得积分10
3秒前
kimchiyak应助酷炫翠柏采纳,获得10
4秒前
4秒前
4秒前
666发布了新的文献求助10
4秒前
Orange应助kolico采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
搜集达人应助zbr采纳,获得10
6秒前
英姑应助LIN96T采纳,获得10
6秒前
xu完成签到,获得积分10
6秒前
6秒前
Tess发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
充电宝应助冷静水蓝采纳,获得10
9秒前
9秒前
zhonglv7应助漂亮的乐松采纳,获得20
9秒前
9秒前
和谐青柏应助tao采纳,获得10
10秒前
10秒前
科研小白完成签到 ,获得积分10
10秒前
10秒前
咩咩发布了新的文献求助10
11秒前
11秒前
Mida应助jason采纳,获得10
11秒前
Anode关注了科研通微信公众号
11秒前
JamesPei应助Tess采纳,获得10
11秒前
Chuu♡完成签到,获得积分10
12秒前
徐佳乐完成签到,获得积分10
12秒前
沉静的黎昕完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853