Prior sensitivity analysis in default Bayesian structural equation modeling.

先验概率 结构方程建模 贝叶斯概率 灵敏度(控制系统) 计算机科学 贝叶斯定理 计量经济学 统计 人工智能 机器学习 数学 工程类 电子工程
作者
Sara van Erp,Joris Mulder,Daniel L. Oberski
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:23 (2): 363-388 被引量:98
标识
DOI:10.1037/met0000162
摘要

Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下雨天的树完成签到,获得积分10
刚刚
FR完成签到,获得积分10
1秒前
缓慢天菱完成签到,获得积分10
1秒前
fhhkckk3发布了新的文献求助20
1秒前
liuxinyu完成签到 ,获得积分10
1秒前
1秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
2秒前
blink完成签到,获得积分10
3秒前
3秒前
今天要早睡完成签到,获得积分10
3秒前
钩子89应助同尘采纳,获得20
4秒前
Levi李发布了新的文献求助10
4秒前
东日完成签到,获得积分10
4秒前
cheng4046完成签到,获得积分10
4秒前
zz2905完成签到,获得积分10
5秒前
悠夏sunny完成签到,获得积分0
5秒前
ttkd11完成签到,获得积分10
5秒前
5秒前
小马甲应助瘦瘦半山采纳,获得10
6秒前
昨夜雨疏风骤完成签到,获得积分10
6秒前
7秒前
浮游应助re采纳,获得10
7秒前
lalala应助思维隋采纳,获得10
7秒前
周星星完成签到,获得积分10
8秒前
8秒前
范先生完成签到,获得积分10
8秒前
布布完成签到,获得积分10
8秒前
招财进堡完成签到,获得积分20
8秒前
9秒前
独特乘风完成签到,获得积分10
9秒前
10秒前
10秒前
wacfpp完成签到,获得积分10
10秒前
酷酷小天鹅完成签到,获得积分10
10秒前
邓可新完成签到,获得积分10
11秒前
牧星河完成签到,获得积分10
11秒前
芋头读文献完成签到,获得积分10
11秒前
司徒诗蕾完成签到 ,获得积分10
12秒前
12秒前
愉快天与发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465