Prior sensitivity analysis in default Bayesian structural equation modeling.

先验概率 结构方程建模 贝叶斯概率 灵敏度(控制系统) 计算机科学 贝叶斯定理 计量经济学 统计 人工智能 机器学习 数学 工程类 电子工程
作者
Sara van Erp,Joris Mulder,Daniel L. Oberski
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:23 (2): 363-388 被引量:98
标识
DOI:10.1037/met0000162
摘要

Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
关关发布了新的文献求助10
刚刚
莫莫完成签到,获得积分10
1秒前
柚子发布了新的文献求助10
1秒前
nerd发布了新的文献求助10
1秒前
专注的十八完成签到,获得积分10
1秒前
洗澡记得戴浴帽完成签到,获得积分10
1秒前
科研通AI6应助装货采纳,获得10
1秒前
健壮的以莲完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
Doctor_jie完成签到 ,获得积分10
5秒前
yjx关注了科研通微信公众号
5秒前
脑洞疼应助ksq采纳,获得10
5秒前
高贵水壶发布了新的文献求助10
5秒前
5秒前
乔钰涵发布了新的文献求助10
5秒前
氵王完成签到 ,获得积分10
6秒前
莫莫发布了新的文献求助10
6秒前
Orange应助无心的仙人掌采纳,获得10
7秒前
rudjs发布了新的文献求助10
7秒前
完美世界应助小成采纳,获得100
7秒前
今后应助诸恶莫作采纳,获得10
8秒前
9秒前
椰子完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助30
9秒前
10秒前
科研通AI6应助大力的冥幽采纳,获得10
10秒前
高贵水壶完成签到,获得积分10
11秒前
踏实的咖啡应助陶醉清采纳,获得10
11秒前
踏实的咖啡应助陶醉清采纳,获得10
11秒前
踏实的咖啡应助陶醉清采纳,获得10
11秒前
心心应助加菲丰丰采纳,获得10
11秒前
12秒前
若离发布了新的文献求助10
13秒前
13秒前
冷傲的小小完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126