Anomalous pH‐Dependent Nanofluidic Salinity Gradient Power

纳米孔 等电点 表面电荷 反向电渗析 电荷密度 渗透力 纳米流体学 材料科学 化学物理 离子 极化(电化学) 化学工程 分析化学(期刊) 浓差极化 功率密度 纳米技术 化学 色谱法 功率(物理) 热力学 物理化学 有机化学 生物化学 物理 发电 工程类 反渗透 正渗透 量子力学
作者
Li‐Hsien Yeh,Fu Chen,Yu‐Ting Chiou,Yen‐Shao Su
出处
期刊:Small [Wiley]
卷期号:13 (48) 被引量:77
标识
DOI:10.1002/smll.201702691
摘要

Abstract Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion‐selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH‐dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m −2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000‐fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface‐charge‐dependent NSGP behaviors result from the pH‐dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next‐generation, high‐performance NSGP devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小young完成签到 ,获得积分10
刚刚
刚刚
寒月如雪发布了新的文献求助10
2秒前
青云完成签到,获得积分10
2秒前
about完成签到,获得积分10
2秒前
2秒前
4秒前
2028847955发布了新的文献求助10
4秒前
科研通AI2S应助about采纳,获得10
6秒前
无语发布了新的文献求助10
6秒前
6秒前
薛之谦完成签到,获得积分10
6秒前
小洪俊熙完成签到,获得积分10
8秒前
金容完成签到,获得积分10
9秒前
科研通AI2S应助微笑天磊采纳,获得10
9秒前
logitech发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助甜甜盼夏采纳,获得30
15秒前
xiuxiuhao发布了新的文献求助10
16秒前
dg完成签到,获得积分10
21秒前
logitech完成签到,获得积分10
21秒前
23秒前
511发布了新的文献求助20
25秒前
564654SDA完成签到,获得积分10
33秒前
TT完成签到,获得积分10
34秒前
风中的凌旋完成签到,获得积分20
35秒前
35秒前
NexusExplorer应助迷路以筠采纳,获得10
36秒前
乐乐应助未来大牛采纳,获得10
36秒前
科研薯条完成签到,获得积分10
36秒前
cjw123发布了新的文献求助10
39秒前
slokni发布了新的文献求助10
40秒前
Aries完成签到,获得积分10
41秒前
小羊发布了新的文献求助10
42秒前
脑洞疼应助科研通管家采纳,获得30
43秒前
小马甲应助科研通管家采纳,获得10
43秒前
所所应助科研通管家采纳,获得10
43秒前
慕青应助科研通管家采纳,获得10
43秒前
领导范儿应助cjw123采纳,获得10
43秒前
慕青应助科研通管家采纳,获得10
43秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
Understanding Autism 950
Understanding Autism and Autistic Functioning 950
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Eric Dunning and the Sociology of Sport 850
QMS18Ed2 | process management. 2nd ed 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2915239
求助须知:如何正确求助?哪些是违规求助? 2553473
关于积分的说明 6908890
捐赠科研通 2215265
什么是DOI,文献DOI怎么找? 1177609
版权声明 588353
科研通“疑难数据库(出版商)”最低求助积分说明 576448