Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing

强迫(数学) 含水量 环境科学 水分 土层 卫星 土壤科学 水文地质学 土壤水分 遥感 地质学 气象学 大气科学 岩土工程 地理 工程类 航空航天工程
作者
Manali Pal,Rajib Maity,Sayan Dey
出处
期刊:Water Resources Management [Springer Nature]
卷期号:30 (6): 1973-1986 被引量:13
标识
DOI:10.1007/s11269-016-1263-4
摘要

Information of Soil Moisture Content (SMC) at different depths i.e. vertical Soil Moisture (SM) profile is important as it influences several hydrological processes. In the era of microwave remote sensing, spatial distribution of soil moisture information can be retrieved from satellite data for large basins. However, satellite data can provide only the surface (~0–10 cm) soil moisture information. In this study, a methodological framework is proposed to estimate the vertical SM profile knowing the information of SMC at surface layer. The approach is developed by coupling the memory component of SMC within a layer and the forcing component from soil layer lying above by an Auto-Regressive model with an exogenous input (ARX) where forcing component is the exogenous input. The study highlights the mutual reliance between SMC at different depths at a given location assuming the ground water table is much below the study domain. The methodology is demonstrated for three depths: 25, 50 and 80 cm using SMC values of 10 cm depth. Model performance is promising for all three depths. It is further observed that forcing is predominant than memory for near surface layers than deeper layers. With increase in depth, contribution of SM memory increases and forcing dissipates. Potential of the proposed methodology shows some promise to integrate satellite estimated surface soil moisture maps to prepare a fine resolution, 3-dimensional soil moisture profile for large areas, which is kept as future scope of this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵智发布了新的文献求助10
刚刚
杨佳莉发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
小蜗完成签到 ,获得积分20
1秒前
111222完成签到 ,获得积分20
1秒前
wsq完成签到,获得积分10
2秒前
2秒前
吴兴倩发布了新的文献求助10
2秒前
2秒前
叶子完成签到 ,获得积分20
2秒前
2秒前
3秒前
3秒前
睡个好觉完成签到,获得积分10
3秒前
4秒前
4秒前
平常莞发布了新的文献求助10
4秒前
4秒前
5秒前
michael发布了新的文献求助10
6秒前
Free完成签到,获得积分10
6秒前
Link发布了新的文献求助10
6秒前
6秒前
刘悦发布了新的文献求助10
7秒前
tangyuan发布了新的文献求助10
7秒前
真白白鸭发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Sucre发布了新的文献求助10
8秒前
水牛喝饱了完成签到 ,获得积分10
8秒前
Hello应助自觉的凡旋采纳,获得10
8秒前
8秒前
9秒前
9秒前
Avvei完成签到,获得积分10
9秒前
9秒前
完美世界应助薄荷采纳,获得10
9秒前
鸡蛋发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210