拷贝数变化
分割
贝叶斯概率
拷贝数分析
SNP公司
计算机科学
DNA微阵列
统计
生物
单核苷酸多态性
模式识别(心理学)
数学
遗传学
人工智能
基因组
基因表达
基因
基因型
作者
Yu Chuan Tai,Mark N. Kvale,John S. Witte
出处
期刊:Biometrics
[Wiley]
日期:2009-09-17
卷期号:66 (3): 675-683
被引量:8
标识
DOI:10.1111/j.1541-0420.2009.01328.x
摘要
Summary High‐density single‐nucleotide polymorphism (SNP) microarrays provide a useful tool for the detection of copy number variants (CNVs). The analysis of such large amounts of data is complicated, especially with regard to determining where copy numbers change and their corresponding values. In this article, we propose a Bayesian multiple change‐point model (BMCP) for segmentation and estimation of SNP microarray data. Segmentation concerns separating a chromosome into regions of equal copy number differences between the sample of interest and some reference, and involves the detection of locations of copy number difference changes. Estimation concerns determining true copy number for each segment. Our approach not only gives posterior estimates for the parameters of interest, namely locations for copy number difference changes and true copy number estimates, but also useful confidence measures. In addition, our algorithm can segment multiple samples simultaneously, and infer both common and rare CNVs across individuals. Finally, for studies of CNVs in tumors, we incorporate an adjustment factor for signal attenuation due to tumor heterogeneity or normal contamination that can improve copy number estimates.
科研通智能强力驱动
Strongly Powered by AbleSci AI